A brief guide to using vagrant-aws

CCHits was recently asked to move it’s media to another host, and while we were doing that we noticed that many of the Monthly shows were broken in one way or another…

Cue a massive rebuild attempt!

We already have a “ShowRunner” script, which we use with a simple Vagrant machine, and I knew you can use other hypervisor “providers”, and I used to use AWS to build the shows, so why not wrap the two parts together?

Firstly, I installed the vagrant-aws plugin:

vagrant plugin install vagrant-aws

Next I amended my Vagrantfile with the vagrant-aws values mentioned in the plugin readme:

Vagrant.configure(2) do |config|
    config.vm.provider :aws do |aws, override|
    config.vm.box = "ShowMaker"
    aws.tags = { 'Name' => 'ShowMaker' }
    config.vm.box_url = "https://github.com/mitchellh/vagrant-aws/raw/master/dummy.box"
    
    # AWS Credentials:
    aws.access_key_id = "DECAFBADDECAFBADDECAF"
    aws.secret_access_key = "DeadBeef1234567890+AbcdeFghijKlmnopqrstu"
    aws.keypair_name = "TheNameOfYourSSHKeyInTheEC2ManagementPortal"
    
    # AWS Location:
    aws.region = "us-east-1"
    aws.region_config "us-east-1", :ami => "ami-c29e1cb8" # If you pick another region, use the relevant AMI for that region
    aws.instance_type = "t2.micro" # Scale accordingly
    aws.security_groups = [ "sg-1234567" ] # Note this *MUST* be an SG ID not the name
    aws.subnet_id = "subnet-decafbad" # Pick one subnet from https://console.aws.amazon.com/vpc/home
    
    # AWS Storage:
    aws.block_device_mapping = [{
      'DeviceName' => "/dev/sda1",
      'Ebs.VolumeSize' => 8, # Size in GB
      'Ebs.DeleteOnTermination' => true,
      'Ebs.VolumeType' => "GP2", # General performance - you might want something faster
    }]
    
    # SSH:
    override.ssh.username = "ubuntu"
    override.ssh.private_key_path = "/home/youruser/.ssh/id_rsa" # or the SSH key you've generated
    
    # /vagrant directory - thanks to https://github.com/hashicorp/vagrant/issues/5401
    override.nfs.functional = false # It tries to use NFS - use RSYNC instead
  end
  config.vm.box = "ubuntu/trusty64"
  config.vm.provision "shell", path: "./run_setup.sh"
  config.vm.provision "shell", run: "always", path: "./run_showmaker.sh"
end

Of course, if you try to put this into your Github repo, it’s going to get pillaged and you’ll be spending lots of money on monero mining very quickly… so instead, I spotted this which you can do to separate out your credentials:

At the top of the Vagrantfile, add these two lines:

require_relative 'settings_aws.rb'
include SettingsAws

Then, replace the lines where you specify a “secret”, like this:

    aws.access_key_id = AWS_ACCESS_KEY
    aws.secret_access_key = AWS_SECRET_KEY

Lastly, create a file “settings_aws.rb” in the same path as your Vagrantfile, that looks like this:

module SettingsAws
    AWS_ACCESS_KEY = "DECAFBADDECAFBADDECAF"
    AWS_SECRET_KEY = "DeadBeef1234567890+AbcdeFghijKlmnopqrstu"
end

This file then can be omitted from your git repository using a .gitignore file.

Running Streisand to provide VPN services on my home server

A few months ago I was a guest on The Ubuntu Podcast, where I mentioned that I use Streisand to terminate my VPN connections. I waffled and blathered a bit about how I set it up, but in the end it comes down to this:

  1. Install Virtualbox on my Ubuntu server. Include the “Ext Pack”.
  2. Install Vagrant on my Ubuntu server.
  3. Clone the Streisand Github repository to my Ubuntu server.
  4. Enter that cloned repository, and edit the Vagrantfile as follows:
    1. Add the line “config.vm.boot_timeout = 65535” after the one starting “config.vm.box”.
    2. Change the streisand.vm.hostname line to be an appropriate hostname for my network, and add on the following line (replace “eth0” with the attached interface on your network and “192.0.2.1” with an unallocated static IP address from your network):
      streisand.vm.network "public_network", bridge: "eth0", ip: "192.0.2.1", :use_dhcp_assigned_default_route => false
    3. Add a “routing” line, as follows (replace 192.0.2.254 with your router IP address):
      streisand.vm.provision "shell", run: "always", inline: "ip route add 0.0.0.0/1 via 192.0.2.254 ; ip route add 128.0.0.0/1 via 192.0.2.254"
    4. Comment out the line “streisand_client_test => true”
    5. Amend the line “streisand_ipv4_address” to reflect the IP address you’ve put above in 4.2.
    6. Remove the block starting “config.vm.define streisand-client do |client|”
  5. Run “vagrant up” in that directory to start the virtual machine. Once it’s finished starting, there will be a folder called “Generated Docs” – open the .html file to see what credentials you must use to access the server. Follow it’s instructions.
  6. Once it’s completed, you should open ports on your router to the IP address you’ve specified. Typically, at least, UDP/500 and UDP/4500 for the IPsec service, UDP/636 for the OpenVPN service and TCP/4443 for the OpenConnect service.

What to do when your Facebook account gets hacked?

Hello! Congratulations, you’ve been hacked! Oh, OK, that’s probably not how it feels, right?

You’ve probably just had a message from someone to say that your account has been messaging loads of people, or that there is stuff on your timeline that … well, you didn’t put there.

It’s OK. It happens to a LOT of people, because Facebook is a very clear target. Many many people spend large quantities of their life scrolling through the content on there, so it’s bound to be a target, and for some reason, they found your account.

What happened?

So, first of all, let’s address how this probably happened.

  1. Most common: Someone found your password. I’ll cover how this could have happened in a bit – under where it says “Passwords – Something you know” below.
  2. Less common, but still frequent: Someone convinced you (using “Social Engineering” – again, I’ll explain this in a bit) to let them log in as you.
  3. A bit of a stretch, but it does happen occasionally: An application, service, or website you use that is allowed to use Facebook on your behalf, got compromised, and that system is using it’s permissions to use your account to post stuff “as you”.
  4. Someone got into your email account (because of one of the above things) and then asked for a password reset on your Facebook account.

Fixing the problem.

It’s easier to do this from the Facebook website, but you can probably still do all this lot from a mobile device.

Let’s solve the first two. Go into the Facebook Security Settings page, where you should change your password and boot off any sessions that aren’t YOU right now (don’t worry if there’s LOADS there – if you’ve used your phone somewhere that’s not where you are now, Facebook stores it as a new session). You can always log back into those other sessions later if you need to.

The third one can be a bit time consuming: kicking off apps you don’t use (mine was like walking into a museum!). Head into the Facebook Apps Settings page, and start clicking the X buttons to remove the apps you don’t use. Every now and then you might get a message saying that there was an error removing one of those apps. It’s fine, just give it a second and then try again. If someone has got into your account because of one of the first two, it’s probably worth checking this part anyway just in case they did something else to your account than just sending spam…

You might also want to check out your timeline, and remove the messages you sent (if they were posted to your timeline) or contact people who have been messaged to let them know you lost control of your account.

If someone got into your email and started resetting passwords then you’ve got a much worse problem, and I can’t really go into it here, but, it’s probably best to say that if they were just after your Facebook account, you were REALLY lucky. Your email account typically has the ultimate reset code for *EVERY* account password, so it’s probably best to make sure that what I’m saying about Facebook is also true for your email provider!

Making it less likely to happen again in the future.

Passwords – “Something you know”

If you’ve done the above, but you’ve picked a password you’ve used somewhere else before, then you’re kinda setting yourself up for this to happen to you again in the future.

You see, the way that most of these attacks happen is by someone getting hold of a password you’ve used on a less secure site, and then tried logging into your Facebook account with that password they’ve snaffled. Want to see how likely this is? Visit Have I Been Pwned and see if your details are in there (the chances are very very very high!) and you’ll see websites who have been breached in the past and had your details taken from there… and this is just “the ones we know about” – who knows how many other websites have been breached and we don’t know about!

You can prevent this by not using the same password everywhere. I know. It’s hard to think of a new password every time you come to a new website, and how will you remember that password the next time you get there? Well, fortunately, there’s a solution to this one – a password manager. It’s an application for your laptops, desktops and mobile devices that stores your password for you, and tells you about them when you go to login to a website.

What’s more, that password manager can create passwords for you, not like “BobIsMyBestFriend1988” but more like “za{UHCtqi3<6mC_j6TblSk3hwS” (which, unless you’re some kind of savant, you’ll never remember that)…. and then tell you about that in the future. So now, you only need to remember one password to get into the password manager, and it will tell you about everything else! So, that helps!

There are two ways to do this – run an add-on in your web browser and on your mobile devices which synchronises everything to the cloud for you, or run a separate app and synchronise those passwords yourself. Personally, as I’m a bit geeky, I’m happy doing the second, but most people reading this are probably going to want someone else to sort out the synchronising.

Second Factor: “Something you have”

What if you accidentally gave your password to someone? Or if you went to a website that wasn’t actually the right page and put your password in there by mistake? Falling prey to this when it’s done on purpose is known as social engineering or phishing, and means that someone else has your password to get into your account.

To reduce the impact of something like this, we can force someone logging in to use a “second factor” – something you have, rather than something you know, sometimes referred to as “Two Factor” or “2FA”. You might already use something like this at work – either a card with a chip on it (called a “Smartcard”), a device you plug into the USB port on your computer, or a keyring style device with numbers on. Or… you might have an app on your phone.

If you want to set this up on Facebook, you’ll need to enable it. Take a look at their help page about this!

(And if you want to know about securing your email account, check out the “Docs” column on this site for instructions about many email providers)

Building a Dual boot machine running Ubuntu 17.04 and Windows 10 with full-disk encryption

This post has been revised since it was initially published on 31st March due to errors found in the resulting build. It was also missing details on the shared data drive between the two machines, so has been amended to include that.

** WARNING ** This works for me – it might not for you!

The outcome of this build will leave you with the following:

Boot up, go through the VeraCrypt bootloader, enter a password for Windows, or press escape to load the Grub bootloader where you will boot (K|L|X|)Ubuntu(| Mate| Gnome).

The Windows environment will be encrypted with VeraCrypt, an open source Full Disk Encryption technology, while the Linux environment will be encrypted using Luks. The shared volume (between Windows and Linux) will be encrypted with VeraCrypt.

PLEASE BE AWARE THAT ANY WINDOWS 10 UPGRADES WILL FAIL TO APPLY AS IT WILL NOT RECOGNISE THE VERACRYPT FILE SYSTEM! To resolve this, decrypt the Windows volume, perform the upgrade, re-encrypt it, then transfer the new recovery ISO image to the boot volume, following the method below. Yes, this will take some time. No, you don’t need to decrypt the data volume. Yes, you can use that data volume to shunt the ISO image around.

LATE EDIT 2020-01-06: I’ve just spotted a link to this post over on Level1Techs. In that post, someone asked if the broken upgrades is still a thing. Turns out that since I wrote this in 2017, it’s not been fixed. Now, I should stress, I’ve stopped using this layout as I went all-Linux on that machine, but… it might work for you now?! Also, shout out to 92aceshigh for referencing this post, and glad something I wrote helped you! ☺

Step 1:Create your partition table

My partition table, for a 320GB Disk looks (roughly) like this:

Partition 1: 20GB – Linux /Boot (ext2, plus space for ISO files for random booting)
Partition 2: 60GB – Windows C:\ (NTFS VeraCrypt)
Partition 3: 72GB – Linux Physical Volume (LVM PV, Luks Encrypted)
– logical volume 1: 16Gb Swap (Linux Swap)
– logical volume 2: 60Gb Linux (ext4)
Partition 4: 156GB – Shared Volume (NTFS, VeraCrypt)

I performed this using GParted in the Gnome Live image using the GParted. Some rational here:

  1. The first partition also allows me to add other ISOs if I want to boot them.
  2. I have 4GB RAM, this gives me some extra space to allow me to hibernate, but also… 4Gb. Ugh.
  3. I then split my Linux and Windows partitions into two equal parts.

Step 2: Use Cryptsetup to format the disk

The following steps need to be run as root.

sudo -i

Step 2a: Format the partitions as LUKS

cryptsetup luksFormat -y -v /dev/sda3

Step 2b: Open the LUKS volume

cryptsetup luksOpen /dev/sda3 lvm-pv

Step 2c: Create the LVM Physical Volume over the LUKS volume

vgcreate vg00 /dev/mapper/lvm-pv

Step 2d: Define the LVM Logical Volumes over the LVM Physical Volume

lvcreate -n lv00_swap -L 16G vg00       # Define 16GB Swap Space
lvcreate -n lv01_root -l +100%FREE vg00 # Define the rest of vg00 as /

LEAVE YOUR TERMINAL OPEN

Step 3: Install your Linux distribution.

Note that when you perform your install, when you get to the partitioning screen, select “Manual”, and then pick out the following volumes:

/dev/mapper/vg00-lv01_root = ext4 formatted, mount point: /
/dev/mapper/vg00-lv00_swap = swap
/dev/sda1 = ext2, format, mount point: /boot

Select the boot volume of /dev/sda. But wait, I hear you say, Windows has a well know history of nuking Grub partitions… Well, we’ll sort that in a bit…

DON’T EXIT THE LIVE SESSION ONCE THE INSTALL HAS FINISHED (select “Continue Testing”).

Step 4: Make your machine actually able to boot

Go back to your terminal session.  It should still be logged in as root. We need to re-mount all the partitions…

Step 4a: Mount your volumes

mount /dev/mapper/vg00-lv01_root /target
mount /dev/sda1 /target/boot
for i in /dev /dev/pts /proc /sys /run; do sudo mount -B $i /target$i; done

Step 4b: Swap to the “Target” filesystem

chroot /target

Step 4c: Setup your volumes to prompt for cryptographic keys

echo "LinuxRoot UUID=`blkid | grep sda3 | cut -d\\\" -f2` none luks" > /etc/crypttab

Step 4d: Update the boot volume to use these changes

update-initramfs -u

Step 4e: Ensure Grub is also installed to the MBR for testing

grub-install --force /dev/sda1
chattr +i /boot/grub/i386-pc/core.img
update-grub

The first part installs grub to the boot position, even though it doesn’t like it, and the second forces the core file to be unchangeable… I’m not exactly sure of the impact of this, but it’s the only way to do the next part of this process. The last bit makes sure that you’ve got the latest grub config files installed.

Step 5: Reboot and test

Just check to make sure the machine boots OK!

You should have a booting Ubuntu derivative with an encrypted file system. Awesome.

Now let’s install Windows!

Step 6: Install Windows and Veracrypt.

You should boot from your install media, when you get to the partition selector, there should only be a single NTFS partition for it to use. Use it.

Install the latest version of Veracrypt from https://veracrypt.codeplex.com/

Once it’s installed, go to System, Encrypt System Partition/Drive, “Normal” system encryption, Windows System Partition, Multi-Boot (accept the warning), Boot Drive “Yes”, Single Disk, “Non-Windows Boot Loader” – No, and then… let it go through all the rest of the steps. There will be one stage where it asks you to create a rescue disk. Just save it for later. Once the encryption settings are collected, it will do a test (which is basically just rebooting to the boot loader, having you put in your password and going back into Windows), and then let it start performing the encryption.

Once the encryption finishes, reboot the computer, enter the decryption password and test it boots to Windows OK. Then reboot it again and press escape instead of putting in the password. It will boot to your Ubuntu system.

So, there you have it. One Dual-Boot system with encrypted disks everywhere!

Step 7: Setting up the shared volume.

After you’ve got the Ubuntu and Windows volumes sorted out, next we need the shared data volume to be organised. You’ll need Veracrypt for Ubuntu. Use the following to install the Veracrypt package for Ubuntu:

sudo add-apt-repository ppa:unit193/encryption
sudo apt-get update
sudo apt-get install veracrypt

Once that’s installed, boot back into Windows and create a new volume – perhaps V: for Veracrypt, or E: for Encrypted – your choice, but make sure you create it using the same password that you used for the Windows partition.

Format this new volume with either NTFS or FAT32 so that you can mount it under either operating system. I chose NTFS.

Now, you need to go into Veracrypt’s Settings menu, and select “System Encryption Settings”. Tick “Cache pre-boot authentication password in driver memory” (be aware, this means that if your machine is compromised when powered up, the password could be recovered), then OK. This may prompt you to accept the UAC at this point.

Next, with the mounted volume selected, go to the “Favorites” menu, and choose “Add to System Favorites”. In the screen which comes up, select the box under “Global Settings” which says “Mount system favorite volumes when Windows starts (in the initial phase of the startup procedure)”. There will be a warning about passwords that appears. Click OK.

You may, at this point, want to move certain aspects of your Windows desktop (e.g. the “My Documents” location) to the new mounted drive.

On the Linux OS, become root, with sudo, and then add the following lines to your crontab:

@reboot mkdir -p /shared_storage 
@reboot veracrypt --text --non-interactive --fs-options=uid=1000,gid=1000,umask=0077 --password="YOURSUPERSECUREPASSWORD" /dev/sda4 /shared_storage

These assume that your login user’s ID is 1000 (you can check that by running the command “id” as your logged in user), that you want to use “/shared_storage” as the mount point (it stops Ubuntu treating it as a “Mountable Volume” if it’s not in your home directory and not in /mnt or /media). These options also mean that only that user (and root) can access any of the files in that partition (although, it is only you on this laptop… right?), which means you can safely use it for any files which check user permissions before allowing you to access them (e.g. SSH keys). I then set up a symbolic link to /home/MYUSERACCOUNT/Documents into the /shared_storage/Documents directory, and /home/MYUSERACCOUNT/.ssh into the /shared_storage/SSH_Keys directory.

Citataions

The following list of resources helped me out when I was struggling with what to do next! They may not be canonical sources, but they helped.

  1. http://thesimplecomputer.info/full-disk-encryption-with-ubuntu – This is what got me started on this little journey!
  2. http://askubuntu.com/questions/161689/how-do-i-get-grub2-to-boot-a-truecrypt-encrypted-mbr – How to add the Veracrypt recovery disk to your Grub boot partition. Note, I do it slightly differently to this now.
  3. http://askubuntu.com/questions/711801/i-deleted-files-in-boot-now-cant-boot-linux – I may have done this. It tells you how to put all your important files back for booting purposes :)
  4. https://www.youtube.com/watch?v=Z1yWbBIqh1o – Walk through of installing Veracrypt to Windows 10. I used this to see some of the terms after I’d already installed Veracrypt. I don’t quite follow the same route as him though.
  5. https://www.linux.com/blog/how-full-encrypt-your-linux-system-lvm-luks – Using LVM inside Luks for the full-Linux disk (this was why I’ve re-written this post)
  6. https://wiki.archlinux.org/index.php/Dm-crypt/Encrypting_an_entire_system – Some details around how the Luks stuff all works

I may or may not have reinstalled Windows and Kubuntu about 20 times during this process, cursing myself for starting the whole damn process off in the first place!!!

Using Expect to SFTP a file

Because of technical limitations on a pair of platforms I’m using at work, I am unable to set-up key-based SFTP or SCP to transfer files between the pair of them, so I knocked together this short script using the TCL based Expect language.


#!/usr/bin/expect
set arg1 [lindex $argv 0]
set arg2 [lindex $argv 1]
set arg3 [lindex $argv 2]
set timeout 1000
spawn sftp "$arg2"
expect {
yes {
send "yes\r"
exp_continue
}
ass {
send "$arg3\r"
exp_continue
}
sftp {
send "put $arg1\r"
expect {
100% {
send "quit\r"
exp_continue
}
}
}
}

view raw

upload.exp

hosted with ❤ by GitHub

There’s no error checking here, which isn’t great, but as a quick-and-dirty script to SFTP files to a box which needs the password each run… it works! :)

Building a WPA2 Protected Wireless Access Extender for Jogglers using Ubuntu 12.04

Shesh! What a lot of keywords in the title!

For those who don’t know what some of those key words were, I’ll break down the title

  • Ubuntu is a Linux distribution, and 12.04 is the version number of the latest Long Term Stable version.
  • Joggler is the name of a device sold by O2 a couple of years ago. It is a re-branded OpenPeak tablet.
  • A Wireless Access Extender is a device like a WiFi enabled router, but it uses the same DHCP pool and should use the same SSID name and WPA2 passphrase.
  • WPA2 is the latest incarnation of the WiFi security protocol. It is currently (at this time, as far as I know) uncracked, unlike WPA1 or WEP.

So, now that we know what I’m talking about, let’s look at what components we will be using today.

  • An O2 Joggler. EBay lists them from between £30 and £100. They originally sold for around £100, but got popular when O2 dropped the price to £50. They are no longer available for sale from O2, hence EBay.
  • A wired network connection. I’m using a pair of Ethernet over Power (or “HomePlug”) devices to let me position this device in a useful place in my house. I’ve had a lot of success with the 200M devices sold by 7DayShop.com, but if I were buying new today, I’d probably stretch up to the 500M devices, as they will be Half Duplex (like a narrow street permitting traffic only one way at a time), and will loose some data due to interference and “collisions” – where two devices on the Ethernet over Power “network” are talking at the same time. Ultimately, you won’t get the equivalent to 100M Full Duplex with the 200M devices, but should do with the 500M devices.
  • A USB stick. This needs to be 4Gb or greater, but not all devices are suitable. I bought some 4Gb sticks from 7DayShop.com and found they only actually held around 3.5Gb… making them unsuitable. I bought three 8Gb sticks from 7DayShop.com, but only used one for this task!
  • A Ubuntu 12.04 install. Actually, I used the Xubuntu 12.04 image, because I didn’t need everything that Ubuntu 12.04 gave me. This is a special non-official build of Xubuntu, customised for Joggler hardware and it’s touchscreen, and is what I’ll be moving all my Jogglers in the house to, eventually, however, the principals in making all of this stuff work will apply just as much to Ubuntu as it would Xubuntu – special build or not!
  • Once installed, you’ll use a combination of VNC and SSH to manage your device, these will be through the X11VNC project and OpenSSH-Server. You should have an SSH client (for Linux/Mac, ssh should be fine, for Windows, use PuTTY) and a VNC client (for Ubuntu, I use Remmina, for Windows, I use TightVNC).

So, you’ve got all your goodies, and you’re ready to go. Let’s do this!

  1. Transfer the Xubuntu image to the USB stick. This is a simple task, and is clearly documented on the site where I got the Xubuntu image from, and involves you copying the image directly to the USB stick, not to one of it’s partitions. It sounds complicated, it really isn’t.
  2. Stick the Xubuntu stick into the side of the Joggler. Get used to that shape, as it’s going to be in the side of that from now on. This is because the Linux distribution needs more than the 1Gb that the Joggler holds internally.
  3. Plug in the HomePlug device – make it as close to the wall as you can make it! I’ve had experience of it being three 4way plug strips away from the wall and it worked fine, but I’ve also had the same HomePlug only one 4way away, and it’s completely failed to work, and had to juggle all my sockets to get it plugged directly into the wall. I think it may be down to the number of “noisy” plugs in the same 4way, but I can’t be sure. Just experiment!
  4. Plug your Ethernet cable between the HomePlug and the Joggler.
  5. Power on the Joggler. It will start up with an O2 logo (or possibly an “OpenPeak” logo – depends on when the device was manufactured)  – sometimes either of these may corrupt or show with a big white block as it’s booting. Don’t worry too much about this, we’ll stay away from the boot screen as much as possible! :)
  6. Once you get to a blue screen with icons on it – this is Xubuntu (well, actually XFCE4, but the semantics are moot really). Click on the blue spot in the top left corner of the screen – it may be a little fiddly – and select Ubuntu Software Centre.
  7. Open the “Florence” keyboard – found by pressing the small grid icon near the clock in the top right corner of the screen. If you struggle with this keyboard (I did), you may find it easier to use the “OnBoard” keyboard, found through the applications menu (again, via the blue button in the top corner).
  8. Select the Search box in the Software Centre and search for OpenSSH-Server. Click on the only entry which comes back (you need to search for the exact term) and then click install. While that’s installing, click on the two arrows icon in the top right corner, and select Connection Information. Make a note of the IP address you have received. Once it’s finished installing you can move away to something a little more comfortable to work on your Joggler!
  9. SSH to your Joggler’s IP address – the username for the device is “joggler” and the password is also “joggler”. All of the following you’ll need to be root for. I always use the following line to become root:
    sudo su -
  10. The wireless driver that is installed by default on the Jogglers don’t support “Master” mode – the mode you need to be a wifi access point or extender, so you’ll need to change the wireless driver. Thanks to this post, we know that you edit the file /etc/modprobe.d/joggler.conf and move the comment symbol (#) from before the line blacklist rt2870sta to the line blacklist rt2800usb. It should look like this after you’re done:
    # blacklist rt2800usb
    blacklist rt2870sta
  11. We need to bridge the wlan0 and eth0 interfaces.
    1. Install bridge-utils using apt-get install.
    2. Now we’ll start to configure the bridge. Edit /etc/network/interfaces to create your bridge interfaces.
      auto lo
      iface lo inet loopback
      
      auto eth0
      iface eth0 inet manual
      
      auto wlan0
      iface wlan0 inet manual
          pre-up service hostapd start
          post-up brctl addif br0 wlan0
      
      auto br0
      iface br0 inet dhcp
          bridge_ports eth0 wlan0
          pre-up iptables-restore -c < /etc/iptables.rules
          post-down iptables-save -c > /etc/iptables.rules

      If you want to use a static IP address instead of a DHCP one, then change the last block (auto br0; iface br0 inet dhcp) to the following (this assumes your network is a 192.168.0/24 with .1 as your router to the outside world):

      auto br0
      iface br0 inet static
          bridge_ports eth0 wlan0
          address 192.168.0.2
          broadcast 192.168.0.255
          netmask 255.255.255.0
          gateway 192.168.0.1
    3. Setup /etc/sysctl.conf to permit forwarding of packets. Find, and remove the comment symbol (#) from the line which looks like this:
      # net.ipv4.ip_forward = 1
    4. Create your initial /etc/iptables.rules (this is based on details from this page) and then “restore” them using iptables.
      *filter
      :INPUT ACCEPT [0:0]
      :FORWARD ACCEPT [0:0]
      :OUTPUT ACCEPT [1:81]
      -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT
      -A FORWARD -m state --state INVALID -j DROP
      -A FORWARD -i wlan0 -o eth0 -j ACCEPT
      -A FORWARD -i eth0 -o wlan0 -j ACCEPT
      COMMIT
    5. Check the iptables have restored properly by running iptables -L -v which should return the following data:
      # iptables -L -v
      Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
       pkts bytes target     prot opt in     out     source               destination         
      
      Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
       pkts bytes target     prot opt in     out     source               destination
          0     0 ACCEPT     all  --  any    any     anywhere             anywhere             state RELATED,ESTABLISHED
          0     0 DROP       all  --  any    any     anywhere             anywhere             state INVALID
          0     0 ACCEPT     all  --  wlan0  eth0    anywhere             anywhere
          0     0 ACCEPT     all  --  eth0   wlan0   anywhere             anywhere            
      
      Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
       pkts bytes target     prot opt in     out     source               destination
  12. Now you’ve got a bridged interface, and your wifi adaptor is ready to go, let’s get the DHCP relay in and working right.
    1. apt-get install dhcp3-relay
    2. It’ll ask you where to forward the DHCP requests to – that is your current gateway – if you have your network as 192.168.0.0/24 with the gateway as .1, then it should be 192.168.0.1.
    3. Next, it’ll ask which interfaces to listen on – this is br0.
    4. The last screen asks for some options to configure – this is “-m forward” (without the quote marks).
  13. Last thing to do, we need to configure something to listen on the wifi interface to provide the Access Point facility to your device. This is “hostapd”.
    1. apt-get install hostapd
    2. zcat /usr/share/doc/hostapd/examples/hostapd.conf.gz > /etc/hostapd/hostapd.conf
    3. Edit /etc/hostapd/hostapd.conf replacing the following config items:
      FROM: # driver = hostapd
      TO:   driver = nl80211
      FROM: #country_code = US
      TO:   country_code = GB
      FROM: hw_mode = a
      TO:   hw_mode = g
      FROM: channel = 60
      TO:   channel = 12
      FROM: #ieee80211n = 1
      TO:   ieee80211n = 1
      FROM: #wpa = 1
      TO:   wpa = 2
      FROM: #wpa_passphrase=secret passphrase
      TO:   wpa_passphrase=MySecretPassword
      FROM: #wpa_pairwise = TKIP CCMP
      TO:   wpa_pairwise = TKIP CCMP
    4. Edit /etc/default/hostapd amending the DAEMON_CONF line to show /etc/hostapd/hostapd.conf

Reboot, and your access point should come to life! Huzzah!! Initially it’ll have the SSID of “test” (it’s in /etc/hostapd/hostapd.conf as the config line “ssid = test”) but you should probably change it to the same SSID as your main router. If you do that, ensure your WPA passphrase is the same as your main router too, otherwise your network will get very confused!

So, now you’ve got an Access extender, running Ubuntu… what else could you do with it? Well, I run one of two things on all of mine – sqeezeplay or vlc monitoring a webcam. All very useful stuff, and stuff I was doing with it before it was an access extender!

A quick word on salting your hashes.

If you don’t know what hashing is in relation to coding, the long version is here: Cryptographic Hash Function but the short version is that it performs a mathermatical formula to components of the file, string or data, and returns a much shorter number with a slim chance of “collisions”.

I don’t know whether it’s immediately clear to anyone else, but I used to think this was a good idea.

<?php
$password = sha1($_POST['password']);

Then I went to a PHPNW session, and asked someone to take a look at my code, and got a thorough drubbing for not adding a cryptographic salt (wikipedia).

For those who don’t know, a salt is a set of characters you add before or after the password (or both!) to make it so that a simple “rainbow table analysis” doesn’t work (essentially a brute-force attack against the authentication data by hashing lots and lots of strings looking for another hash which matches the stored hash). In order to make it possible to actually authenticate with that string again in the future, the string should be easily repeatable, and a way to do that is to use other data that’s already in the user record.

For example, this is a simple salt:

<?php
$password = sha1('salt' . $_POST['password']);

I read in the April 2012 edition of 2600 magazine something that I should have been doing with my hashes all along. How’s this for more secure code?

<?php
$site_salt = 'pepper';
$SQL = "SELECT intUserID FROM users WHERE strUsername = ?";
$DB = new PDO($dsn);
$query = $DB->prepare($SQL);
$query->execute(array(strtolower($_POST['username'])));
$userid = $query->fetch();
if ($userid == false) {
  return false;
}
$prefix = '';
$suffix = '';
if ($userid % 2 == 0) {
  $prefix = $site_salt;
} else {
  $suffix = $site_salt;
}
if ($userid % 3 == 0) {
  $prefix .= strtolower($_POST['username']);
} else {
  $suffix .= strtolower($_POST['username']);
}
if ($userid % 4 == 0) {
  $prefix = strrev($prefix);
}
if ($userid % 5 == 0) {
  $suffix = strrev($suffix);
}
$hashedPassword = sha1($prefix . $_POST['password'] . $suffix);

So, this gives you an easily repeatable string, that’s relatively hard to calculate without easy access to the source code :)

Installing MOTP-AS under Ubuntu 11.10

Please note, I am having issues with localhost authentication. See below

MOTP-AS is a simple installable two-factor authentication system using the mOTP algorythm for generating one-time passwords. MOTP-AS integrates with FreeRadius to provide the same authentication to log in to managed servers in a consistent manner.

I’ve recently installed this on my Ubuntu 11.10 laptop and on my Ubuntu 12.04 Beta server, and the installation instructions worked on both, so I thought I’d share them with you.

Installing appropriate packages

sudo apt-get install libpam-radius-auth freeradius mysql-server phpmyadmin

Alternatively, use tasksel to install the LAMP server task, then

sudo apt-get install libpam-radius-auth freeradius

Download the latest version of motp-as from http://motp-as.network-cube.de/index.php/download/current-version

Unpack it.

tar xfz ~/Downloads/motp-as*

Setting up the database

Go into the Setup/MySQL directory of the MOTP-AS directory. Edit motp_schema.sql at the line “CREATE USER”. Change the password from motp to something more secure.

mysql -u root -p < motp_schema.sql

Now update Setup/config.php with the new password you just created.

Setting up the web site

Copy the HTML directory to /var/www/motp (or somewhere else in your web root). You may need to do this either as root, or as a user with permissions to write to /var/www

cp -Rf ~/MOTP-AS_*/HTML /var/www/motp

Note this must be done after you’ve made your changes to Setup/config.php

Setting up FreeRadius

Stop the FreeRadius service

sudo /etc/init.d/freeradius stop

Users

Backup the users file

sudo mv /etc/freeradius/users /etc/freeradius/users.dist

Edit the users file you’re about to copy in

nano ~/MOTP-AS_*/Setup/Freeradius/users

Find the part where it says “/var/www/htdocs/radius-auth.php” and change that to “/var/www/motp/radius-auth.php

Copy in the new users file

sudo cp ~/MOTP-AS_*/Setup/Freeradius/users /etc/freeradius/users

Dynamic Clients

Backup the dynamic-clients file

sudo mv /etc/freeradius/sites-available/dynamic-clients /etc/freeradius/sites-available/dynamic-clients.dist

Edit the new dynamic-clients file

nano ~/MOTP-AS_*/Setup/Freeradius/dynamic-clients

Find the three lines saying “/var/www/htdocs” and replace that string with “/var/www/motp” (I use Ctrl+W, Ctrl+R in nano to do a replace-all.)

Copy in the new dynamic-clients file

sudo cp ~/MOTP-AS_*/Setup/Freeradius/dynamic-clients /etc/freeradius/sites-available/dynamic-clients

Then make that function available

sudo ln -s /etc/freeradius/sites-available/dynamic-clients /etc/freeradius/sites-enabled/dynamic-clients

Accounting

Amend the default script to enable accounting

sudo cp /etc/freeradius/sites-available/default /etc/freeradius/sites-available/default.dist

Then edit it to use the MOTP accounting functions

sudo nano /etc/freeradius/sites-available/default

Search for the line “accounting {” then comment that whole block out with the hash/pound sign “#“. Fortunately in the distribution supplied default file, this only means commenting out a few lines, which are “detail“, “unix“, “radutmp“, “exec“, “attr_filter.accounting_response“, and then the closing “}” for that block.

If you’re using nano, press the insert key (or Ctrl+R if you can’t find that easily) and enter /home/MyUserName/MOTP-AS_v0.7.2/Setup/Freeradius/accounting (amend the path as appropriate). Replace the section “/var/www/htdocs” with “/var/www/motp“.

Save and exit

Finishing off FreeRadius

sudo /etc/init.d/freeradius start

Install your client

Personally, I have an Android device, and I chose to install the Mobile-OTP app from the Android Marketplace. I also, through work, have a Nokia 6303i Classic, on which I installed the MOTP application from the MOTP site.

I’ve heard good things about iOTP for iPhone, although I personally don’t have one.

Configuring MOTP

Go to http://localhost/motp (or https://yourdomain.com/motp)

Login with the username admin and password of motp.

Securing the admin account

Click on the red text in “First time configuration

Click on “Change password of User ‘admin’

Enter a new password. Do not set the time or uses section of this page. Click “Set“. Ignore the warning.

Click on “Home

Setting up your first user

Click on “Quick Add” (under “Wizards”)

Enter a username. It should be the username for your Ubuntu 11.10 device.

On the client, create a profile for the device. Most of them create a profile by asking for a seed, rather than a secret, so those will likely be more than 16 characters long – maybe even 20 (Mobile-OTP for Android) or 25 (MOTP Java app).

Once you’ve got your secret (on Mobile-OTP, by pushing-and-holding on the profile name and selecting “Show Secret“, on MOTP Java app, once you’ve put 0000 as the PIN for the first time to initialize it, you get a string “Init-Secret:“), put that into the “Secret” field, and then ask the user to set their pin here – I suggest 1234 initially, as the user can change it to something they want after.

Click OK, then click “Logout” and test authentication. If it all goes OK, they should be presented with “Welcome to the Mobile OTP Authentication Server“.

Under “Settings” they can change their own PIN.

Testing radius authentication works OK

Run the radius testing program, like this, as a user:

radtest username passcode localhost 0 testing123

(This assumes the default localhost password hasn’t changed)

If you get anything like “rad_recv: Access-Reject packet from host“, then you’ve failed to configure something properly, or you’ve entered the PIN or code wrong.

Restart FreeRadius in debugging mode by doing the following:

/etc/init.d/freeradius stop
/usr/sbin/freeradius -X

This will produce a large quantity of logs on-screen, so I’d suggest running the test itself from a separate window. Run the radtest command (listed above) again. Look for your error messages. In my case, I forgot to update the line in users, so I saw this error message: Could not open input file: /var/www/htdocs/radius-auth.php

To find where this fault was, I did (as root, in /etc/freeradius)

find -R 'htdocs' /etc/freeradius

And got back: users: Exec-Program-Wait = “/usr/bin/php /var/www/htdocs/radius-auth.php %{User-Name} %{User-Password} %{Client-Shortname}”

That told me the fault was in the users file.

Fix the issue, check it again, and when you get this message “rad_recv: Access-Accept packet from host” press Ctrl+C to cancel the test mode of FreeRadius, and then run:

sudo /etc/init.d/freeradius start

Configuring pam_radius_auth.conf

Edit /etc/pam_radius_auth.conf

sudo nano /etc/pam_radius_auth.conf

Find the line which says “127.0.0.1” and replace the shared secret with something you want your server to use. You will also need to amend /etc/freeradius/clients.conf and replace the “secret” in the localhost client there (by default, it’s “testing123” in freeradius).

If you want to use your OTP for all authentication credentials, edit /etc/pam.d/common-auth, or if you just want to use it with specific access protocols, edit the relevant file in /etc/pam.d for the authentication systems you want to use OTP for.

You need to add the following line – either on the line before “@include common-auth” (for non common-auth files) or after the primary comment block for common-auth.

auth sufficient pam_radius_auth.so

Open a separate terminal session to your box (especially! if you’re remote) and ensure you can still login with your regular credentials.

Then try a connection with your radius credentials. It should just work! If not, stop the freeradius server and re-run it using /usr/sbin/freeradius -X and see whether you’re getting a different error message.

** UPDATE **

I have noticed that I’m getting locked out when using my non-radius credentials. This is probably due to the placement of the line in the /etc/pam.d/common-auth – it should probably come after the pam_unix.so line, but I’ve not tested that yet. I’m also going to try to suggest that there be an optional time-out period on locked accounts to the developers of MOTP-AS.

The second issue I’m struggling with is that I’m getting errors when using the LightDM. I’m getting the following error message in /var/log/auth.log:

pam_succeed_if(lightdm:auth): requirement "user ingroup nopasswdlogin" not met by user "spriggsj"

I don’t know if this is because I’m using ecryptfs as well, or because there’s something wonky going on with the common-auth structure I’m using.

Transfer my files using SFTP and SCP only?

A colleague today asked for some guidance around setting up an SFTP and SCP only account on a RedHat based Linux machine.

I sent him a collection of links, including one to the CopSSH project, and he implemented the code on that link, but then struggled when it didn’t work.

Aside from the fact the shell wasn’t copied into /etc/shells (which wasn’t disastrous, but did mean we couldn’t reuse it again later), it was still returning an error on each load.

Doing some digging into it, and running some debugging, I noticed that pscp (the PuTTY SCP) tool uses the SFTP subsystem rather than the SCP command to upload files, so we need to also check that the SFTP server hasn’t been called, instead of the SCP command, and also the SCP command needs to be corrected.

Here follows a script, complete with comments. Personally, I’d save this in /bin/sftponly, created and owned by root, and set to permissions 755 (rwxr-xr-x). Then, set the shell to this for each user which needs to do SFTP or SCP only.

#!/bin/bash
# Based on code from http://www.itefix.no/i2/node/12366
# Amended by Jon Spriggs (jon@sprig.gs)
# Last update at 2011-09-16

# Push the whole received command into a variable
tests=`echo $*`

# Set up a state handler as false
isvalid=0

# Test for the SFTP handler.
# The 0:36 values are the start character and length of the handler string.
if [ "${tests:0:36}" == "-c /usr/libexec/openssh/sftp-server" ]; then
  # Set the state handler to true
  isvalid=1
  # Configure the handling service
  use=/usr/libexec/openssh/sftp-server
fi

# Test for the SCP handler.
if [ "${tests:0:6}" == "-c scp" ]; then
  # Set the state handler to true
  isvalid=1
  # Configure the handling service
  use=/usr/bin/scp
fi

# If the state handler is set to false (0), exit with an error message.
if [ "$isvalid" == "0" ]; then
  echo "SCP only!"
  exit 1
fi

# Run the handler
exec $use $*