Setting UK keyboards in Vagrant Ubuntu Machines, using Ansible

Wow, now there’s a specific post title…

I use Ansible… quite a bit :) and one of the things I do with Ansible is to have a standard build desktop that I can create using Vagrant. Recently I upgraded the base to Ubuntu 18.04, and it annoyed me that I still didn’t have a working keyboard combination, so I kept getting US keyboards. I spent 20 minutes sorting it out, and here’s how to do it.

- name: Set keyboard layout
  debconf:
    name: "keyboard-configuration"
    question: "keyboard-configuration/{{ item.key }}"
    value: "{{ item.value }}"
    vtype: "{{ item.type|default('string') }}"
  with_items:
  - { key: "altgr", value: "The default for the keyboard layout", vtype: "select" }
  - { key: "compose", value: "No compose key", vtype: "select" }
  - { key: "ctrl_alt_bksp", value: "false", type: "boolean" }
  - { key: "variant", value: "English (UK)", vtype: "select" }
  - { key: "layout", value: "English (UK)", vtype: "select" }
  - { key: "model", value: "Generic 105-key PC (intl.)", vtype: "select" }

I posted how I got to this point over at the Server Fault post that got me most of the way. https://serverfault.com/a/912342/14832

Creating OpenStack “Allowed Address Pairs” for Clusters with Ansible

This post came about after a couple of hours of iterations, so I can’t necessarily quote all the sources I worked from, but I’ll do my best!

In OpenStack (particularly in the “Kilo” release I’m working with), if you have a networking device that will pass traffic on behalf of something else (e.g. Firewall, IDS, Router, Transparent Proxy) you need to tell the virtual NIC that the interface is allowed to pass traffic for other IP addresses, as OpenStack applies by default a “Same Origin” firewall rule to the interface. Defining this in OpenStack is more complex than it could be, because for some reason, you can’t define 0.0.0.0/0 as this allowed address pair, so instead you have to define 0.0.0.0/1 and 128.0.0.0/1.

Here’s how you define those allowed address pairs (note, this assumes you’ve got some scaffolding in place to define things like “network_appliance”):

allowed_address_pairs: "{% if (item.0.network_appliance|default('false')|lower() == 'true') or (item.1.network_appliance|default('false')|lower() == 'true') %}[{'ip_address': '0.0.0.0/1'}, {'ip_address': '128.0.0.0/1'}]{% else %}{{ item.0.allowed_address_pairs|default(omit) }}{% endif %}"

OK, so we’ve defined the allowed address pairs! We can pass traffic across our firewall. But (and there’s always a but), the product I’m working with at the moment has a floating MAC address in a cluster, when you define an HA pair. They have a standard schedule for how each port’s floating MAC is assigned… so here’s what I’ve ended up with (and yes, I know it’s a mess!)

allowed_address_pairs: "{% if (item.0.network_appliance|default('false')|lower() == 'true') or (item.1.network_appliance|default('false')|lower() == 'true') %}[{'ip_address': '0.0.0.0/1'},{'ip_address': '128.0.0.0/1'}{% if item.0.ha is defined and item.0.ha != '' %}{% for vdom in range(0,40, 10) %},{'ip_address': '0.0.0.0/1','mac_address': '{{ item.0.floating_mac_prefix|default(item.0.image.floating_mac_prefix|default(floating_mac_prefix)) }}:{% if item.0.ha.group_id|default(0) < 16 %}0{% endif %}{{ '%0x' | format(item.0.ha.group_id|default(0)|int) }}:{% if vdom+(item.1.interface|default('1')|replace('port', '')|int)-1 < 16 %}0{% endif %}{{ '%0x' | format(vdom+(item.1.interface|default('1')|replace('port', '')|int)-1) }}'}, {'ip_address': '128.0.0.0/1','mac_address': '{{ item.0.floating_mac_prefix|default(item.0.image.floating_mac_prefix|default(floating_mac_prefix)) }}:{% if item.0.ha.group_id|default(0) < 16 %}0{% endif %}{{ '%0x' | format(item.0.ha.group_id|default(0)|int) }}:{% if vdom+(item.1.interface|default('0')|replace('port', '')|int)-1 < 16 %}0{% endif %}{{ '%0x' | format(vdom+(item.1.interface|default('1')|replace('port', '')|int)-1) }}'}{% endfor %}{% endif %}]{% else %}{{ item.0.allowed_address_pairs|default(omit) }}{% endif %}"

Let's break this down a bit. The vendor says that each port gets a standard prefix, (e.g. DE:CA:FB:AD) then the penultimate octet is the "Cluster ID" number in hex, and then the last octet is the sum of the port number (zero-indexed) added to a VDOM number, which increments in 10's. We're only allowed to assign 10 "allowed address pairs" to an interface, so I've got the two originals (which are assigned to "whatever" the defined mac address is of the interface), and four passes around. Other vendors (e.g. this one) do things differently, so I'll probably need to revisit this once I know how the next one (and the next one... etc.) works!

So, we have here a few parts to make that happen.

The penultimate octet, which is the group ID in hex needs to be two hex digits long, and without adding more python modules to our default machines, we can't use a "pad" filter (to add 0's to the beginning of the mac octets), so we do that by hand:

{% if item.0.ha.group_id|default(0) < 16 %}0{% endif %}

And here's how to convert the group ID into a hex number:

{{ '%0x' | format(item.0.ha.group_id|default(0)|int) }}

Then the next octet is the sum of the VDOM and PortID. First we need to loop around the VDOMs. We don't always know whether we're going to be adding VDOMs until after deployment has started, so here we will assume we've got 3 VDOMs (plus VDOM "0" for management) as it doesn't really matter if we don't end up using them. We create the vdom variable like this:

{% for vdom in range(0, 40, 10) %} STUFF {% endfor %}

We need to put the actual port ID in there too. As we're using a with_subelement loop we can't create an increment, but what we can do is ensure we're recording the interface number. This only works here because the vendor has a sequential port number (port1, port2, etc). We'll need to experiment further with other vendors! So, here's how we're doing this. We already know how to create a hex number, but we do need to use some other Jinja2 filters here:

{{ '%0x' | format(vdom+(item.1.interface|default('1')|replace('port', '')|int)-1) }}

Let's pull this apart a bit further. item.1.interface is the name of the interface, and if it doesn't exist (using the |default('1') part) we replace it with the string "1". So, let's replace that variable with a "normal" value.

{{ '%0x' | format(vdom+("port1"|replace('port', '')|int)-1) }}

Next, we need to remove the word "port" from the string "port1" to make it just "1", so we use the replace filter to strip part of that value out. Let's do that:

{{ '%0x' | format(vdom+("1"|int)-1) }}

After that, we need to turn the string "1" into the literal number 1:

{{ '%0x' | format(vdom+1-1) }}

We loop through vdom several times, but let's pick one instance of that at random - 30 (the fourth iteration of the vdom for-loop):

{{ '%0x' | format(30+1-1) }}

And then we resolve the maths:

{{ '%0x' | format(30) }}

And then the |format(30) turns the '%0x' into the value "1e"

Assuming the vendor prefix is, as I mentioned, 'de:ca:fb:ad:' and the cluster ID is 0, this gives us the following resulting allowed address pairs:

[
{"ip_address": "0.0.0.0/1"},
{"ip_address": "128.0.0.0/1"},
{"ip_address": "0.0.0.0/1", "mac_address": "de:ca:fb:ad:00:00"},
{"ip_address": "128.0.0.0/1", "mac_address": "de:ca:fb:ad:00:00"},
{"ip_address": "0.0.0.0/1", "mac_address": "de:ca:fb:ad:00:0a"},
{"ip_address": "128.0.0.0/1", "mac_address": "de:ca:fb:ad:00:0a"},
{"ip_address": "0.0.0.0/1", "mac_address": "de:ca:fb:ad:00:14"},
{"ip_address": "128.0.0.0/1", "mac_address": "de:ca:fb:ad:00:14"},
{"ip_address": "0.0.0.0/1", "mac_address": "de:ca:fb:ad:00:1e"},
{"ip_address": "128.0.0.0/1", "mac_address": "de:ca:fb:ad:00:1e"}
]

I hope this has helped you!

Sources of information:

Defining Networks with Ansible

In my day job, I’m using Ansible to provision networks in OpenStack. One of the complaints I’ve had about the way I now define them is that the person implementing the network has to spell out all the network elements – the subnet size, DHCP pool, the addresses of the firewalls and names of those items. This works for a manual implementation process, but is seriously broken when you try to hand that over to someone else to implement. Most people just want something which says “Here is the network I want to implement – 192.0.2.0/24″… and let the system make it for you.

So, I wrote some code to make that happen. It’s not perfect, and it’s not what’s in production (we have lots more things I need to add for that!) but it should do OK with an IPv4 network.

Hope this makes sense!

---
- hosts: localhost
  vars:
  - networks:
      # Defined as a subnet with specific router and firewall addressing
      external:
        subnet: "192.0.2.0/24"
        firewall: "192.0.2.1"
        router: "192.0.2.254"
      # Defined as an IP address and CIDR prefix, rather than a proper network address and CIDR prefix
      internal_1:
        subnet: "198.51.100.64/24"
      # A valid smaller network and CIDR prefix
      internal_2:
        subnet: "203.0.113.0/27"
      # A tiny CIDR network
      internal_3:
        subnet: "203.0.113.64/30"
      # These two CIDR networks are unusable for this environment
      internal_4:
        subnet: "203.0.113.128/31"
      internal_5:
        subnet: "203.0.113.192/32"
      # A massive CIDR network
      internal_6:
        subnet: "10.0.0.0/8"
  tasks:
  # Based on https://stackoverflow.com/a/47631963/5738 with serious help from mgedmin and apollo13 via #ansible on Freenode
  - name: Add router and firewall addressing for CIDR prefixes < 30     set_fact:       networks: >
        {{ networks | default({}) | combine(
          {item.key: {
            'subnet': item.value.subnet | ipv4('network'),
            'router': item.value.router | default((( item.value.subnet | ipv4('network') | ipv4('int') ) + 1) | ipv4),
            'firewall': item.value.firewall | default((( item.value.subnet | ipv4('broadcast') | ipv4('int') ) - 1) | ipv4),
            'dhcp_start': item.value.dhcp_start | default((( item.value.subnet | ipv4('network') | ipv4('int') ) + 2) | ipv4),
            'dhcp_end': item.value.dhcp_end | default((( item.value.subnet | ipv4('broadcast') | ipv4('int') ) - 2) | ipv4)
          }
        }) }}
    with_dict: "{{ networks }}"
    when: item.value.subnet | ipv4('prefix') < 30   - name: Add router and firewall addressing for CIDR prefixes = 30     set_fact:       networks: >
        {{ networks | default({}) | combine(
          {item.key: {
            'subnet': item.value.subnet | ipv4('network'),
            'router': item.value.router | default((( item.value.subnet | ipv4('network') | ipv4('int') ) + 1) | ipv4),
            'firewall': item.value.firewall | default((( item.value.subnet | ipv4('broadcast') | ipv4('int') ) - 1) | ipv4)
          }
        }) }}
    with_dict: "{{ networks }}"
    when: item.value.subnet | ipv4('prefix') == 30
  - debug:
      var: networks

Getting a PEM file from your OpenSSH Private Key

At work, the system used to get a Windows Administrator password in our OpenStack based system (K5) is derived from the SSH Public Key recorded in the system.

It’s really easy to use, and can be found here: https://decrypt-win-passwd.uk-1.cf-app.net

There is one downside to this though – the application needs the private key to be supplied to it (it’s OK, you regularly rotate your SSH private keys… right??) in PEM format… Now, if you’re any sort of sensible SSH user, you’ve used either OpenSSH’s ssh-keygen command, or PuTTY’s puttygen command… neither of which produce a PEM format key.

So, you need to convert it. After a bit of proding and poking, I found this command

openssl rsa -outform PEM -in ~/.ssh/id_rsa -out ~/.ssh/id_rsa.pem

Like the last post, this is more for me to find stuff in the future, but… if he helps someone else, so much the better!!

Outlook based “Kanban”

Do you use Outlook for your email? Do you sometimes wish you could use a Kanban board with Outlook? Well, look no further!!

Thanks to an internal post about improving workflows, someone mentioned this git repo called “Outlook-Taskboard”, that gives you the ability to create and manipulate your Outlook tasks in a Kanban fashion.

Because it’s “just” native Outlook tasks, you can still manage them using the sidebar or the mobile apps, but when you get back to Outlook, you get to see their status and manage your tasks appropriately.

Check Point Management API tips

I was very fortunate yesterday to spend some time with two Check Point engineering staff. Check Point make high-end firewall products that I’m using at work. During the conversation, I mentioned two issues I’ve had during automated builds of Checkpoint appliances…

  1. During the build process, I want to add lots of devices. In my build, however, I need to log in to the management API, and therefore hand into the clear-text userdata field the credentials for the user account – NOT GOOD! What I was told was that actually, you don’t need to operate like that! If you’re running commands on your manager, you can instead run the command in “root” mode to make it bypass any requests for authentication, and as an added “win” it publishes every change you make on exit too! Here’s how:mgmt_cli -r true add host name "New Host 1" ip-address "192.0.2.1"
  2. My other option was to make it so that we can finish our Ansible deployment of the OpenStack server, and then, once it was up and accessible… call out against the API. But how do you do this during the build? Well, you can run four commands against the server to allow remote access to the API, and then you should have access from all the same places your GUI client can access it from! Here’s how:mgmt_cli -r true login domain "System Data" > id.txt
    mgmt_cli -s id.txt set api-settings accepted-api-calls-from "all ip addresses that can be used for gui clients" automatic-start true
    mgmt_cli -s id.txt publish
    api restart

My sincere thanks to Javier and Uri for their guidance. For those wondering about those API calls – see these links: Using the -r flag and configuring the API for remote access.

Today I learned… Cloud-init doesn’t like you repeating the same things

Because of templates I was building in my post “Today I learned… Ansible Include Templates”, I thought you could repeat the same sections over again. Here’s a snippet of something like what I’d built (after combining lots of templates together):

Note this is a non-working code sample!


#cloud-config
packages:
- iperf
- git

write_files:
- content: {% include 'files/public_key.j2' %}
  path: /root/.ssh/authorized_keys
  owner: root:root
  permission: '0600'
- content: {% include 'files/private_key.j2' %}
  path: /root/.ssh/id_rsa
  owner: root:root
  permission: '0600'

packages:
- byobu

write_files:
- content: |
    #!/bin/bash
    git clone {{ test_scripts }} /root/iperf_scripts
    bash /root/iperf_scripts/run_test.sh
  path: /root/run_test
  owner: root:root
  permission: '0700'

runcmd:
- /root/run_test

I’d get *bits* of it to run – basically, the last file, the last package and the last runcmd… but not all of it.

Turns out, cloud-init doesn’t like having to rebuild all the fragments together. Instead, you need to put them all together, so the write_files items, and the packages items all live in the same area.

Which, when you think about what it’s doing, which is that the parent lines are defining a variable called… well, whatever that line is, and if you replace it, it’s only going to keep the last one, then it all makes sense really!

Today I learned… that you can look at the “cloud-init” files on your target server…

Today I have been debugging why my Cloud-init scripts weren’t triggering on my Openstack environment.

I realised that something was wrong when I tried to use the noVNC console[1] with a password I’d set… no luck. So, next I ran a command to review the console logs[2], and saw a message (now, sadly, long gone – so I can’t even include it here!) suggesting there was an issue parsing my YAML file. Uh oh!

I’m using Ansible’s os_server module, and using templates to complete the userdata field, which in turn gets populated as cloud-init scripts…. and so clearly I had two ways to debug this – prefix my ansible playbook with a few debug commands, but then that can get messy… OR SSH into the box, and look through the logs. I knew I could SSH in, so the cloud-init had partially fired, but it just wasn’t parsing what I’d submitted. I had a quick look around, and found a post which mentioned debugging cloud-init. This mentioned that there’s a path (/var/lib/cloud/instances/$UUID/) you can mess around in, to remove some files to “fool” cloud-init into thinking it’s not been run… but, I reasoned, why not just see what’s there.

And in there, was the motherlode – user-data.txt…. bingo.

In the jinja2 template I was using to populate the userdata, I’d referenced another file, again using a template. It looks like that template needs an extra line at the end, otherwise, it all runs together.

Whew!

This does concern me a little, as I had previously been using this stanza to “simply” change the default user password to something a little less complicated:


#cloud-config
ssh_pwauth: True
chpasswd:
  list: |
    ubuntu:{{ default_password }}
  expire: False

But now that I look at the documentation, I realise you can also specify that as a pre-hashed value (in which case, you would suffix that default_password item above with |password_hash('sha512')) which makes it all better again!

[1] If you run openstack --os-cloud cloud_a console url show servername gives you a URL to visit that has an HTML5 based VNC-ish client. Note the “cloud_a” and “servername” should be replaced by your clouds.yml reference and the server name or server ID you want to connect to.
[2] Like before, openstack --os-cloud cloud_a console log show servername gives you the output of the boot sequence (e.g. dmesg plus the normal startup commands, and finally, cloud-init). It can be useful. Equally, it’s logs… which means there’s a lot to wade through!

Today I learned… Ansible Include Templates

I am building Openstack Servers with the ansible os_server module. One of these fields will accept a very long string (userdata). Typically, I end up with a giant blob of unreadable build script in this field…

Today I learned that I can use this:

---
- name: "Create Server"
  os_server:
    name: "{{ item.value.name }}"
    state: present
    availability_zone: "{{ item.value.az.name }}"
    flavor: "{{ item.value.flavor }}"
    key_name: "{{ item.value.az.keypair }}"
    nics: "[{%- for nw in item.value.ports -%}{'port-name': '{{ ProjectPrefix }}{{ item.value.name }}-Port-{{nw.network.name}}'}{%- if not loop.last -%}, {%- endif -%} {%- endfor -%}]" # Ignore this line - it's complicated for a reason
    boot_volume: "{{ ProjectPrefix }}{{ item.value.name }}-OS-Volume" # Ignore this line also :)
    terminate_volume: yes
    volumes: "{%- if item.value.log_size is defined -%}[{{ ProjectPrefix }}{{ item.value.name }}-Log-Volume]{%- else -%}{{ omit }}{%- endif -%}"
    userdata: "{% include 'templates/userdata.j2' %}"
    auto_ip: no
    timeout: 65535
    cloud: "{{ cloud }}"
  with_dict: "{{ Servers }}"

This file (/path/to/ansible/playbooks/servers.yml) is referenced by my play.yml (/path/to/ansible/play.yml) via an include, so the template reference there is in my templates directory (/path/to/ansible/templates/userdata.j2).

That template can also then reference other template files itself (using {% include 'templates/some_other_file.extension' %}) so you can have nicely complex userdata fields with loads and loads of detail, and not make the actual play complicated (or at least, no more than it already needs to be!)