"centos login" by "fsse8info" on Flickr

Getting the default username and AMI for an OS with #Terraform

I have a collection of AWS AMIs I use for various builds at work. These come from two places – the AWS Marketplace and our internal Build process.

Essentially, our internal builds (for those who work for my employer – these are the OptiMISe builds) are taken from specific AWS Marketplace builds and hardened.

Because I don’t want to share the AMI details when I put stuff on GitHub, I have an override.tf file that handles the different AMI search strings. So, here’s the ami.tf file I have with the AWS Marketplace version:

data "aws_ami" "centos7" {
  most_recent = true

  filter {
    name   = "name"
    values = ["CentOS Linux 7 x86_64 HVM EBS ENA*"]
  }

  filter {
    name   = "architecture"
    values = ["x86_64"]
  }

  owners = ["679593333241"] # CentOS Project
}

And here’s an example of the override.tf file I have:

data "aws_ami" "centos7" {
  most_recent = true

  filter {
    name   = "name"
    values = ["SomeUniqueString Containing CentOS*"]
  }

  owners = ["123456789012"]
}

Next, I put these AMI images into a “null” data source, which is evaluated at runtime:

data "null_data_source" "os" {
  inputs = {
    centos7 = data.aws_ami.centos7.id
  }
}

I always forget which username goes with each image, so in the ami.tf file, I also have this:

variable "username" {
  type = map(string)
  default = {
    centos7 = "centos"
  }
}

And in the override.tf file, I have this:

variable "username" {
  type = map(string)
  default = {
    centos7 = "someuser"
  }
}

To get the right combination of username and AMI, I have this in the file where I create my “instance” (virtual machine):

variable "os" {
  default = "centos7"
}

resource "aws_instance" "vm01" {
  ami = data.null_data_source.os.outputs[var.os]
  # additional lines omitted for brevity
}

output "username" {
  value = var.username[var.os]
}

output "vm01" {
  value = aws_instance.vm01.public_ip
}

And that way, I get the VM’s default username and IP address on build. Nice.

Late edit – 2020-09-20: It’s worth noting that this is fine for short-lived builds, proof of concept, etc. But, for longer lived environments, you should be calling out exactly which AMI you’re using, right from the outset. That way, your builds will (or should) all start out from the same point, no ambiguity about exactly which point release they’re getting, etc.

Featured image is “centos login” by “fsse8info” on Flickr and is released under a CC-BY-SA license.

"Stockholms Stadsbibliotek" by "dilettantiquity" on Flickr

Terraform templates with Maps

For a project I’m working on, I needed to define a list of ports, and set some properties on some of them. In the Ansible world, you’d use statements like:

{% if data.somekey is defined %}something {{ data.somekey }}{% endif %}

or

{{ data.somekey | default('') }}

In a pinch, you can also do this:

{{ (data | default({}) ).somekey | default('') }}

With Terraform, I was finding it much harder to work out how to find whether a value as part of a map (the Terraform term for a Dictionary in Ansible terms, or an Associative Array in PHP terms), until I stumbled over the Lookup function. Here’s how that looks for just a simple Terraform file:

output "test" {
    value = templatefile(
        "template.tmpl",
        {
            ports = {
                "eth0": {"ip": "192.168.1.1/24", "name": "public"}, 
                "eth1": {"ip": "172.16.1.1/24", "name": "protected"}, 
                "eth2": {"ip": "10.1.1.1/24", "name": "management", "management": true}, 
                "eth3": {}
            },
            management = "1"
        }
    )
}

And the template that goes with that?

%{ for port, data in ports ~}
Interface: ${port}%{ if lookup(data, "name", "") != ""}
Alias: ${ lookup(data, "name", "") }%{ endif }
Services: ping%{ if lookup(data, "management", false) == true } ssh https%{ endif }
IP: ${ lookup(data, "ip", "Not Defined") }

%{ endfor }

This results in the following output:

C:\tf>terraform.exe apply -auto-approve

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Outputs:

test = Interface: eth0
Alias: public
Services: ping
IP: 192.168.1.1/24

Interface: eth1
Alias: protected
Services: ping
IP: 172.16.1.1/24

Interface: eth2
Alias: management
Services: ping ssh https
IP: 10.1.1.1/24

Interface: eth3
Services: ping
IP: Not Defined

Naturally, using this in your own user-data or Custom Data field will probably make more sense than just writing it to “output” 😁

Featured image is “Stockholms Stadsbibliotek” by “dilettantiquity” on Flickr and is released under a CC-BY-SA license.

"Sydney Observatory I" by "Newtown grafitti" on Flickr

Using Feature Flags in Terraform with Count Statements

In a project I’m working on in Terraform, I’ve got several feature flags in a module. These flags relate to whether this module should turn on a system in a cloud provider, or not, and looks like this:

variable "turn_on_feature_x" {
  description = "Setting this to 'yes' will enable Feature X. Any other value will disable it. (Default 'yes')"
  value = "yes"
}

variable "turn_on_feature_y" {
  description = "Setting this to 'yes' will enable Feature Y. Any other value will disable it. (Default 'no')"
  value = "no"
}

When I call the module, I then can either leave the feature with the default values, or selectively enable or disable them, like this:

module "region1" {
  source = "./my_module"
}

module "region2" {
  source = "./my_module"
  turn_on_feature_x = "no"
  turn_on_feature_y = "yes"
}

module "region3" {
  source = "./my_module"
  turn_on_feature_y = "yes"
}

module "region4" {
  source = "./my_module"
  turn_on_feature_x = "no"
}

# Result:
# region1 has X=yes, Y=no
# region2 has X=no, Y=yes
# region3 has X=yes, Y=yes
# region4 has X=no, Y=no

When I then want to use the feature, I have to remember a couple of key parts.

  1. Normally this feature check is done with a “count” statement, and the easiest way to use this is to use the ternary operator to check values and return a “1” or a “0” for if you want the value used.

    Ternary operators look like this: var.turn_on_feature_x == "yes" ? 1 : 0 which basically means, if the value of the variable turn_on_feature_x is set to “yes”, then return 1 otherwise return 0.

    This can get a bit complex, particularly if you want to check several flags a few times, like this: var.turn_on_feature_x == "yes" ? var.turn_on_feature_y == "yes" ? 1 : 0 : 0. I’ve found that wrapping them in brackets helps to understand what you’re getting, like this:

    (
      var.turn_on_feature_x == "yes" ?
      (
        var.turn_on_feature_y == "yes" ?
        1 :
        0
      ) :
      0
    )
  2. If you end up using a count statement, the resulting value must be treated as an 0-indexed array, like this: some_provider_service.my_name[0].result

    This is because, using the count value says “I want X number of resources”, so Terraform has to treat it as an array, in case you actually wanted 10 instead of 1 or 0.

Here’s an example of that in use:

resource "aws_guardduty_detector" "Region" {
  count = var.enable_guardduty == "yes" ? 1 : 0
  enable = true
}

resource "aws_cloudwatch_event_rule" "guardduty_finding" {
  count = (var.enable_guardduty == "yes" ? (var.send_guardduty_findings_to_sns == "yes" ? 1 : (var.send_guardduty_findings_to_sqs == "yes" ? 1 : 0)) : 0)
  name = "${data.aws_caller_identity.current.account_id}-${data.aws_region.current.name}-${var.sns_guardduty_finding_suffix}"
  event_pattern = <<PATTERN
{
  "source": [
    "aws.guardduty"
  ],
  "detail-type": [
    "GuardDuty Finding"
  ]
}
PATTERN
}

resource "aws_cloudwatch_event_target" "sns_guardduty_finding" {
  count = (var.enable_guardduty == "yes" ? (var.send_guardduty_findings_to_sns == "yes" ? 1 : 0) : 0)
  rule = aws_cloudwatch_event_rule.guardduty_finding[0].name
  target_id = aws_sns_topic.guardduty_finding[0].name
  arn = aws_sns_topic.guardduty_finding[0].arn
}

resource "aws_cloudwatch_event_target" "sqs_guardduty_finding" {
  count = (var.enable_guardduty == "yes" ? (var.send_guardduty_findings_to_sqs == "yes" ? 1 : 0) : 0)
  rule = aws_cloudwatch_event_rule.guardduty_finding[0].name
  target_id = "SQS"
  arn = aws_sqs_queue.guardduty_finding[0].arn
}

One thing that bit me rather painfully around this was that if you change from an uncounted resource, like this:

resource "some_tool" "this" {
  some_setting = 1
}

To a counted resource, like this:

resource "some_tool" "this" {
  count = var.some_tool == "yes" ? 1 : 0
  some_setting = 1
}

Then, Terraform will promptly destroy some_tool.this to replace it with some_tool.this[0], because they’re not the same referenced thing!

Fun, huh? 😊

Featured image is “Sydney Observatory I” by “Newtown grafitti” on Flickr and is released under a CC-BY license.

"Tracking Methane Sources and Movement Around the Globe" by "NASA/Scientific Visualization Studio" on Nasa.gov

Flexibly loading files in Terraform to license a FortiGate firewall on AWS, Azure and other Cloud platforms

One of the things I’m currently playing with is a project to deploy some FortiGate Firewalls into cloud platforms. I have a couple of Evaluation Licenses I can use (as we’re a partner), but when it comes to automatically scaling, you need to use the PAYG license.

To try to keep my terraform files as reusable as possible, I came up with this work around. It’s likely to be useful in other places too. Enjoy!

This next block is stored in license.tf and basically says “by default, you have no license.”

variable "license_file" {
  default = ""
  description = "Path to the license file to load, or leave blank to use a PAYG license."
}

We can either override this with a command line switch terraform apply -var 'license_file=mylicense.lic', or (more likely) the above override file named license_override.tf (ignored in Git) which has this next block in it:

variable "license_file" {
  default = "mylicense.lic"
}

This next block is also stored in license.tf and says “If var.license is not empty, load that license file [var.license != "" ? var.license] but if it is empty, check whether /dev/null exists (*nix platforms) [fileexists("/dev/null")] in which case, use /dev/null, otherwise use the NUL: device (Windows platforms).”

data "local_file" "license" {
  filename = var.license_file != "" ? var.license_file : fileexists("/dev/null") ? "/dev/null" : "NUL:"
}

👉 Just as an aside, I’ve seen this “ternary” construct in a few languages. It basically looks like this: boolean_operation ? true_value : false_value

That check, logically, could have been written like this instead: "%{if boolean_operation}${true_value}%{else}${false_value}%{endif}"

By combining two of these together, while initially it looks far more messy and hard to parse, I’ve found that, especially in single-line statements, it’s much more compact and eventually easier to read than the alternative if/else/endif structure.

So, this means that we can now refer to data.local_file.license as our data source.

Next, I want to select either the PAYG (Pay As You Go) or BYOL (Bring Your Own License) licensed AMI in AWS (the same principle applies in Azure, GCP, etc), so in this block we provide a different value to the filter in the AMI Data Source, suggesting the string “FortiGate-VM64-AWS *x.y.z*” if we have a value provided license, or “FortiGate-VM64-AWSONDEMAND *x.y.z*” if we don’t.

data "aws_ami" "FortiGate" {
  most_recent = true

  filter {
    name   = "name"
    values = ["FortiGate-VM64-AWS%{if data.local_file.license.content == ""}ONDEMAND%{endif} *${var.release}*"]
  }

  filter {
    name   = "virtualization-type"
    values = ["hvm"]
  }

  owners = ["679593333241"] # AWS
}

And the very last thing is to create the user-data template (known as customdata in Azure), using this block:

data "template_cloudinit_config" "config" {
  gzip          = false
  base64_encode = false

  part {
    filename     = "config"
    content_type = "multipart/mixed"
    content      = templatefile(
      "${path.module}/user_data.txt.tmpl",
      {
        hostname = "firewall"
      }
    )
  }

  part {
    filename     = "license"
    content_type = "text/plain"
    content      = data.local_file.license.content
  }
}

And so that is how I can elect to provide a license, or use a pre-licensed image from AWS, and these lessons can also be applied in an Azure or GCP environment too.

Featured image is “Tracking Methane Sources and Movement Around the Globe” by “NASA/Scientific Visualization Studio

"Accept a New SSH Host Key" by "Linux Screenshots" on Flickr

Purposefully Reducing SSH Security when performing Builds of short-lived devices

I’ve recently been developing a few builds of things at home using throw-away sessions of virtual machines, and I found myself repeatedly having to accept and even having to remove SSH host keys for things I knew wouldn’t be around for long. It’s not a huge disaster, but it’s an annoyance.

This annoyance comes from the fact that SSH uses a thing called “Trust-On-First-Use” (Or TOFU) to protect yourself against a “Man-in-the-Middle” attack (or even where the host has been replaced with something malicious), which, for infrastructure that has a long lifetime (anything more than a couple of days) makes sense! You’re building something you want to trust hasn’t been compromised! That said, if you’re building new virtual machines, testing something and then rebuilding it to prove your script worked… well, that’s not so useful!

So, in this case, if you’ve got a designated build network, or if you trust, implicitly, your normal working network, this is a dead simple work-around.

In $HOME/.ssh/config or in $HOME/.ssh/config.d/local (if you’ve followed my previous advice to use separate ssh config files), add the following stanza:

# RFC1918
Host 10.* 172.16.* 172.17.* 172.18.* 172.19.* 172.20.* 172.21.* 172.22.* 172.23.* 172.24.* 172.25.* 172.26.* 172.27.* 172.28.* 172.29.* 172.30.* 172.31.* 192.168.*
        StrictHostKeyChecking no
        UserKnownHostsFile /dev/null

# RFC5373 and RFC2544
Host 192.0.2.* 198.51.100.* 203.0.113.* 198.18.* 198.19.*
        StrictHostKeyChecking no
        UserKnownHostsFile /dev/null

These stanzas let you disable host key checking for any IP address in the RFC1918 ranges (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16), and for the RFC5373 ranges (192.0.2.0/24, 198.51.100.0/24 and 203.0.113.0/24) – which should be used for documentation, and for the RFC2544 range (198.18.0.0/15) which should be used for inter-network testing.

Alternatively, if you always use a DDNS provider for short-lived assignments (for example, I use davd/docker-ddns) then instead, you can use this stanza:

Host *.ddns.example.com
        StrictHostKeyChecking no
        UserKnownHostsFile /dev/null

(Assuming, of course, you use ddns.example.com as your DDNS address!)

Featured image is “Accept a New SSH Host Key” by “Linux Screenshots” on Flickr and is released under a CC-BY license.

"Monitors" by "Jaysin Trevino" on Flickr

Using monit to monitor Docker Containers

As I only run a few machines with services that matter on them (notably, my home server and my web server), I don’t need a full-on monitoring service, so instead rely on a system called monit.

Monit is an open source piece of software, used to monitor (see, it’s easily named 😄) and, if possible remediate issues with things it sees wrong.

I use this for watching whether particular services are running (and if not, restart them), for whether the ink in my printer is empty, and to monitor the free space and SMART status on my disks.

Today I noticed that a Docker container had stopped, and I’d not noticed. It wasn’t a big thing, but it gnawed at me, so I had a bit of a look around to see what I can find about this.

I found this blog post, titled “Monitoring Docker Containers with Monit”, from 2014, which suggested monitoring the result from docker top… and would you believe it, that’s a valid trick 🙂

So, here’s what I’m doing! Each container has it’s own file called/etc/monit/scripts/check_container_<container-name>.sh which has just this command in it:

#! /bin/bash
docker top "<container-name>"
exit $?

Note that you replace <container-name> in both the filename and the script itself with the name of the container – for example, the container hello-world would be monitored with the file check_container_hello-world.sh, and the line in that file would say docker top "hello-world".

I then have a file in /etc/monit/conf.d/ called check_container_<container-name> which has this content

CHECK PROGRAM <container-name> WITH PATH /etc/monit/scripts/check_container_<container-name>.sh
  START PROGRAM = "/usr/bin/docker start <container-name>"
  STOP PROGRAM = "/usr/bin/docker stop <container-name>"
  IF status != 0 FOR 3 CYCLES THEN RESTART
  IF 2 RESTARTS WITHIN 5 CYCLES THEN UNMONITOR

I then ensure that in /etc/monit/monitrc the line “include /etc/monit/conf.d/*” is included and not commented out, and then restart monit with systemctl restart monit.

Featured image is “Monitors” by “Jaysin Trevino” on Flickr and is released under a CC-BY license.

“New shoes” by “Morgaine” from Flickr

Making Windows Cloud-Init Scripts run after a reboot (Using Terraform)

I’m currently building a Proof Of Value (POV) environment for a product, and one of the things I needed in my environment was an Active Directory domain.

To do this in AWS, I had to do the following steps:

  1. Build my Domain Controller
    1. Install Windows
    2. Set the hostname (Reboot)
    3. Promote the machine to being a Domain Controller (Reboot)
    4. Create a domain user
  2. Build my Member Server
    1. Install Windows
    2. Set the hostname (Reboot)
    3. Set the DNS client to point to the Domain Controller
    4. Join the server to the domain (Reboot)

To make this work, I had to find a way to trigger build steps after each reboot. I was working with Windows 2012R2, Windows 2016 and Windows 2019, so the solution had to be cross-version. Fortunately I found this script online! That version was great for Windows 2012R2, but didn’t cover Windows 2016 or later… So let’s break down what I’ve done!

In your userdata field, you need to have two sets of XML strings, as follows:

<persist>true</persist>
<powershell>
$some = "powershell code"
</powershell>

The first block says to Windows 2016+ “keep trying to run this script on each boot” (note that you need to stop it from doing non-relevant stuff on each boot – we’ll get to that in a second!), and the second bit is the PowerShell commands you want it to run. The rest of this now will focus just on the PowerShell block.

  $path= 'HKLM:\Software\UserData'
  
  if(!(Get-Item $Path -ErrorAction SilentlyContinue)) {
    New-Item $Path
    New-ItemProperty -Path $Path -Name RunCount -Value 0 -PropertyType dword
  }
  
  $runCount = Get-ItemProperty -Path $path -Name Runcount -ErrorAction SilentlyContinue | Select-Object -ExpandProperty RunCount
  
  if($runCount -ge 0) {
    switch($runCount) {
      0 {
        $runCount = 1 + [int]$runCount
        Set-ItemProperty -Path $Path -Name RunCount -Value $runCount
        if ($ver -match 2012) {
          #Enable user data
          $EC2SettingsFile = "$env:ProgramFiles\Amazon\Ec2ConfigService\Settings\Config.xml"
          $xml = [xml](Get-Content $EC2SettingsFile)
          $xmlElement = $xml.get_DocumentElement()
          $xmlElementToModify = $xmlElement.Plugins
          
          foreach ($element in $xmlElementToModify.Plugin)
          {
            if ($element.name -eq "Ec2HandleUserData") {
              $element.State="Enabled"
            }
          }
          $xml.Save($EC2SettingsFile)
        }
        $some = "PowerShell Script"
      }
    }
  }

Whew, what a block! Well, again, we can split this up into a couple of bits.

In the first few lines, we build a pointer, a note which says “We got up to here on our previous boots”. We then read that into a variable and find that number and execute any steps in the block with that number. That’s this block:

  $path= 'HKLM:\Software\UserData'
  
  if(!(Get-Item $Path -ErrorAction SilentlyContinue)) {
    New-Item $Path
    New-ItemProperty -Path $Path -Name RunCount -Value 0 -PropertyType dword
  }
  
  $runCount = Get-ItemProperty -Path $path -Name Runcount -ErrorAction SilentlyContinue | Select-Object -ExpandProperty RunCount
  
  if($runCount -ge 0) {
    switch($runCount) {

    }
  }

The next part (and you’ll repeat it for each “number” of reboot steps you need to perform) says “increment the number” then “If this is Windows 2012, remind the userdata handler that the script needs to be run again next boot”. That’s this block:

      0 {
        $runCount = 1 + [int]$runCount
        Set-ItemProperty -Path $Path -Name RunCount -Value $runCount
        if ($ver -match 2012) {
          #Enable user data
          $EC2SettingsFile = "$env:ProgramFiles\Amazon\Ec2ConfigService\Settings\Config.xml"
          $xml = [xml](Get-Content $EC2SettingsFile)
          $xmlElement = $xml.get_DocumentElement()
          $xmlElementToModify = $xmlElement.Plugins
          
          foreach ($element in $xmlElementToModify.Plugin)
          {
            if ($element.name -eq "Ec2HandleUserData") {
              $element.State="Enabled"
            }
          }
          $xml.Save($EC2SettingsFile)
        }
        
      }

In fact, it’s fair to say that in my userdata script, this looks like this:

  $path= 'HKLM:\Software\UserData'
  
  if(!(Get-Item $Path -ErrorAction SilentlyContinue)) {
    New-Item $Path
    New-ItemProperty -Path $Path -Name RunCount -Value 0 -PropertyType dword
  }
  
  $runCount = Get-ItemProperty -Path $path -Name Runcount -ErrorAction SilentlyContinue | Select-Object -ExpandProperty RunCount
  
  if($runCount -ge 0) {
    switch($runCount) {
      0 {
        ${file("templates/step.tmpl")}

        ${templatefile(
          "templates/rename_windows.tmpl",
          {
            hostname = "SomeMachine"
          }
        )}
      }
      1 {
        ${file("templates/step.tmpl")}

        ${templatefile(
          "templates/join_ad.tmpl",
          {
            dns_ipv4 = "192.0.2.1",
            domain_suffix = "ad.mycorp",
            join_account = "ad\someuser",
            join_password = "SomePassw0rd!"
          }
        )}
      }
    }
  }

Then, after each reboot, you need a new block. I have a block to change the computer name, a block to join the machine to the domain, and a block to install an software that I need.

Featured image is “New shoes” by “Morgaine” on Flickr and is released under a CC-BY-SA license.

"Fishing line and bobbin stuck on tree at Douthat State Park" by "Virginia State Parks" on Flickr

Note to self: Linux shell scripts don’t cope well with combined CRLF + LF files… Especially in User-Data / Custom Data / Cloud-Init scripts

This one is more a nudge to myself. On several occasions when building Infrastructure As Code (IAC), I split out a code sections into one or more files, for readability and reusability purposes. What I tended to do, and this was more apparent with the Linux builds than the Windows builds, was to forget to set the line terminator from CRLF to LF.

While this doesn’t really impact Windows builds too much (they’re kinda designed to support people being idiots with line endings now), Linux still really struggles with CRLF endings, and you’ll only see when you’ve broken this because you’ll completely fail to run any of the user-data script.

How do you determine this is your problem? Well, actually it’s a bit tricky, as neither cat, less, more or nano spot this issue. The only two things I found that identified it were file and vi.

The first part of the combined file with mixed line endings. This part has LF termination.
The second part of the combined file with mixed line endings. This part has CRLF termination.
What happens when we cat these two parts into one file? A file with CRLF, LF line terminators obviously!
What the combined file looks like in Vi. Note the blue ^M at the ends of the lines.

So, how to fix this? Assuming you’re using Visual Studio Code;

A failed line-ending clue in Visual Studio Code

You’ll notice this line showing “CRLF” in the status bar at the bottom of Code. Click on that, which brings up a discrete box near the top, as follows:

Oh no, it’s set to “CRLF”. That’s not what we want!

Selecting LF in that box changes the line feeds into LF for this file, but it’s not saved. Make sure you save this file before you re-run your terraform script!

Notice, we’re now using LF endings, but the file isn’t saved.

Fantastic! It’s all worked!

In Nano, I’ve opened the part with the invalid line endings.

Oh no! We have a “DOS Format” file. Quick, let’s fix it!

To fix this, we need to write the file out. Hit Ctrl+O. This tells us that we’re in DOS Format, and also gives us the keyboard combination to toggle “DOS Format” off – it’s Alt+D (In Unix/Linux world, the Alt key is referred to as the Meta key – hence M not A).

This is how we fix things

So, after hitting Alt+D, the “File Name to write” line changes, see below:

Yey, no pesky “DOS Format” warning here!

Using either editor (or any others, if you know how to solve line ending issues in other editors), you still need to combine your script back together before you can run it, so… do that, and your file will be fine to run! Good luck!

Featured image is “Fishing line and bobbin stuck on tree at Douthat State Park” by “Virginia State Parks” on Flickr and is released under a CC-BY license.

"the home automation system designed by loren amelang himself" by "Nicolás Boullosa" on Flickr

One to read: Ansible for Networking – Part 3: Cisco IOS

One to read: “Ansible for Networking – Part 3: Cisco IOS”

One of the guest hosts and stalwart member of the Admin Admin Telegram group has been documenting how he has built his Ansible Networking lab.

Stuart has done three posts so far, but this is the first one actually dealing with the technology. It’s a mammoth read, so I’d recommend doing it on a computer, and not on a tablet or phone!

Posts one and two were about what the series would cover and how the lab has been constructed.

Featured image is “the home automation system designed by loren amelang himself” by “Nicolás Boullosa” on Flickr and is released under a CC-BY license.