Using Github Actions to create Debian (DEB) and RedHat (RPM) Packages and Repositories

Last week I created a post talking about the new project I’ve started on Github called “Terminate-Notice” (which in hindsight isn’t very accurate – at best it’s ‘spot-instance-responses’ and at worst it’s ‘instance-rebalance-and-actions-responder’ but neither work well)… Anyway, I mentioned how I was creating RPM and DEB packages for my bash scripts and that I hadn’t put it into a repo yet.

Well, now I have, so let’s wander through how I made this work.

TL;DR:

Please don’t hesitate to use the .github directory I’m using for terminate-notice, which is available in the -skeleton repo and then to make it into a repo, you can reuse the .github directory in the terminate-notice.github.io repo to start your adventure.

Start with your source tree

I have a the following files in my shell script, which are:

  • /usr/sbin/terminate-notice (the actual script which will run)
  • /usr/lib/systemd/system/terminate-notice.service (the SystemD Unit file to start and stop the script)
  • /usr/share/doc/terminate-notice/LICENSE (the license under which the code is released)
  • /etc/terminate-notice.conf.d/service.conf (the file which tells the script how to run)

These live in the root directory of my repository.

I also have the .github directory (where the things that make this script work will live), a LICENSE file (so Github knows what license it’s released under) and a README.md file (so people visiting the repo can find out about it).

A bit about Github Actions

Github Actions is a CI/CD pipeline built into Github. It responds to triggers – in our case, pushes (or uploads, in old fashioned terms) to the repository, and then runs commands or actions. The actions which will run are stored in a simple YAML formatted file, referred to as a workflow which contains some setup fields and then the “jobs” (collections of actions) themselves. The structure is as follows:

# The pretty name rendered by Actions to refer to this workflow
name: Workflow Name

# Only run this workflow when the push is an annotated tag starting v
on:
  push:
    tags:
      - 'v*'

# The workflow contains a collection of jobs, each of which has
# some actions (or "steps") to run
jobs:
  # This is used to identify the output in other jobs
  Unique_Name_For_This_Job:
    # This is the pretty name rendered in the Github UI for this job
    name: Job Name
    # This is the OS that the job will run on - typically
    # one of: ubuntu-latest, windows-latest, macos-latest
    runs-on: runner-os
    # The actual actions to perform
    steps:
      # This is a YAML list, so note where the hyphens (-) are
        # The pretty name of this step
      - name: Checkout Code
        # The name of the public collection of actions to perform
        uses: actions/checkout@v3
        # Any variables to pass into this action module
        with:
          path: "REPO"

      # This action will run a shell command
      - name: Run a command
        run: echo "Hello World"

Build a DEB package

At the simplest point, creating a DEB package is;

  1. Create the directory structure (as above) that will unpack from your package file and put the files in the right places.
  2. Create a DEBIAN/control file which provides enough details for your package manager to handle it.
  3. Run dpkg-deb --build ${PATH_TO_SOURCE} ${OUTPUT_FILENAME}

The DEBIAN/control file looks like this:

Package: PACKAGE_NAME
Version: VERSION_ID
Section: misc
Priority: optional
Architecture: all
Maintainer: YOUR_NAME <your_email@example.org>
Description: SOME_TEXT

Section, Priority and Architecture have specifically defined dictionaries you can choose from.

Assuming the DEBIAN/control file was static and also lived in the repo, and I were just releasing the DEB file, then I could make the above work with the following steps:

name: Create the DEB

permissions:
  contents: write

on:
  push:
    tags:
      - 'v*'

jobs:
  Create_Packages:
    name: Create Package
    runs-on: ubuntu-latest
    steps:
      - name: Checkout code
        uses: actions/checkout@v3
        with:
          path: "REPO"

      - name: Copy script files around to stop .github from being added to the package then build the package
        run: |
          mkdir PKG_SOURCE
          cp -Rf REPO/usr REPO/etc REPO/DEBIAN PKG_SOURCE
          dpkg-deb --build PKG_SOURCE package.deb

      - name: Release the Package
        uses: softprops/action-gh-release@v1
        with:
          files: package.deb

But no, I had to get complicated and ALSO build an RPM file… and put some dynamic stuff in there.

Build an RPM file

RPMs are a little more complex, but not by much. RPM takes a spec file, which starts off looking like the DEBIAN/control file, and adds some “install” instructions. Let’s take a look at that spec file:

Name: PACKAGE_NAME
Version: VERSION_ID
Release: 1
Summary: SOME_TEXT
BuildArch: noarch
Source0: %{name}
License: YOUR_LICENSE

%description
SOME_TEXT
MORE_DETAIL

%prep

%build

%install
install -D -m 600 -o root -g root %{SOURCE0}etc/config/file ${RPM_BUILD_ROOT}%{_sysconfdir}/config/file
install -D -m 755 -o root -g root %{SOURCE0}usr/sbin/script ${RPM_BUILD_ROOT}%{_sbindir}/script

%files
etc/config/file
usr/sbin/script

The “Name”, “Version”, “Release” and “BuildArch” values in the top of that file define what the resulting filename is (NAME_VERSION-RELEASE.BUILDARCH.rpm).

Notice that there are some “macros” which replace /etc with %{_sysconfdir}, /usr/sbin with %{_sbindir} and so on, which means that, theoretically, this RPM could be installed in an esoteric tree… but most people won’t bother.

The one quirk with this is that %{name} bit there – RPM files need to have all these sources in a directory named after the package name, which in turn is stored in a directory called SOURCES (so SOURCES/my-package for example), and then it copies the files to wherever they need to go. I’ve listed etc/config/file and usr/sbin/script but these could just have easily been file and script for all that the spec file cares.

Once you have the spec file, you run sudo rpmbuild --define "_topdir $(pwd)" -bb file.spec to build the RPM.

So, again, how would that work from a workflow YAML file perspective, assuming a static spec and source tree as described above?

name: Create the DEB

permissions:
  contents: write

on:
  push:
    tags:
      - 'v*'

jobs:
  Create_Packages:
    name: Create Package
    runs-on: ubuntu-latest
    steps:
      - name: Checkout code
        uses: actions/checkout@v3
        with:
          path: "REPO"

      - name: Copy script files around to stop .github from being added to the package then build the package
        run: |
          mkdir -p SOURCES/my-package-name
          cp -Rf REPO/usr REPO/etc SOURCES/my-package-name
          sudo rpmbuild --define "_topdir $(pwd)" -bb my-package-name.spec

      - name: Release the Package
        uses: softprops/action-gh-release@v1
        with:
          files: RPMS/my-package-name_0.0.1-1.noarch.rpm

But again, I want to be fancy (and I want to make resulting packages as simple to repeat as possible)!

So, this is my release.yml as of today:

name: Run the Release

permissions:
  contents: write

on:
  push:
    tags:
      - 'v*'

jobs:
  Create_Packages:
    name: Create Packages
    runs-on: ubuntu-latest
    steps:
      - name: Checkout code
        uses: actions/checkout@v3
        with:
          path: "REPO"

      - name: Calculate some variables
        run: |
          (
            echo "GITHUB_REPO_NAME=$(echo "${GITHUB_REPOSITORY}" | cut -d/ -f2)"
            echo "VERSION=$(echo "${GITHUB_REF_NAME}" | sed -e 's/^v//')"
            echo "DESCRIPTION=A script which polls the AWS Metadata Service looking for an 'instance action', and triggers scripts in response to the termination notice."
            echo "DEB_ARCHITECTURE=${ARCHITECTURE:-all}"
            echo "RPM_ARCHITECTURE=${ARCHITECTURE:-noarch}"
            echo "RELEASE=1"
            cd REPO
            echo "FIRST_YEAR=$(git log $(git rev-list --max-parents=0 HEAD) --date="format:%Y" --format="format:%ad")"
            echo "THIS_COMMIT_YEAR=$(git log HEAD -n1 --date="format:%Y" --format="format:%ad")"
            echo "THIS_COMMIT_DATE=$(git log HEAD -n1 --format="format:%as")"
            if [ "$FIRST_YEAR" = "$THIS_COMMIT_YEAR" ]
            then
              echo "YEAR_RANGE=$FIRST_YEAR"
            else
              echo "YEAR_RANGE=${FIRST_YEAR}-${THIS_COMMIT_YEAR}"
            fi
            cd ..
          ) >> $GITHUB_ENV

      - name: Make Directory Structure
        run: mkdir -p "SOURCES/${GITHUB_REPO_NAME}" SPECS release

      - name: Copy script files into SOURCES
        run: |
          cp -Rf REPO/[a-z]* "SOURCES/${GITHUB_REPO_NAME}"
          cp REPO/LICENSE REPO/README.md "SOURCES/${GITHUB_REPO_NAME}/usr/share/doc/${GITHUB_REPO_NAME}/"
          if grep -lr '#TAG#' SOURCES
          then
            sed -i -e "s/#TAG#/${VERSION}/" $(grep -lr '#TAG#' SOURCES)
          fi
          if grep -lr '#TAG_DATE#' SOURCES
          then
            sed -i -e "s/#TAG_DATE#/${THIS_COMMIT_YEAR}/" $(grep -lr '#TAG_DATE#' SOURCES)
          fi
          if grep -lr '#DATE_RANGE#' SOURCES
          then
            sed -i -e "s/#DATE_RANGE#/${YEAR_RANGE}/" $(grep -lr '#DATE_RANGE#' SOURCES)
          fi
          if grep -lr '#MAINTAINER#' SOURCES
          then
            sed -i -e "s/#MAINTAINER#/${MAINTAINER:-Jon Spriggs <jon@sprig.gs>}/" $(grep -lr '#MAINTAINER#' SOURCES)
          fi

      - name: Create Control File
        # Fields from https://www.debian.org/doc/debian-policy/ch-controlfields.html#binary-package-control-files-debian-control
        run: |
          mkdir -p SOURCES/${GITHUB_REPO_NAME}/DEBIAN
          (
            echo "Package:      ${GITHUB_REPO_NAME}"
            echo "Version:      ${VERSION}"
            echo "Section:      ${SECTION:-misc}"
            echo "Priority:     ${PRIORITY:-optional}"
            echo "Architecture: ${DEB_ARCHITECTURE}"
            if [ -n "${DEPENDS}" ]
            then
              echo "Depends: ${DEPENDS}"
            fi
            echo "Maintainer: ${MAINTAINER:-Jon Spriggs <jon@sprig.gs>}"
            echo "Description: ${DESCRIPTION}"
            if [ -n "${HOMEPAGE}" ]
            then
              echo "Homepage: ${HOMEPAGE}"
            fi
          ) | tee SOURCES/${GITHUB_REPO_NAME}/DEBIAN/control
          (
            echo "Files:"
            echo " *"
            echo "Copyright: ${YEAR_RANGE} ${MAINTAINER:-Jon Spriggs <jon@sprig.gs>}"
            echo "License: MIT"
            echo ""
            echo "License: MIT"
            sed 's/^/ /' "SOURCES/${GITHUB_REPO_NAME}/usr/share/doc/${GITHUB_REPO_NAME}/LICENSE"
          ) | tee SOURCES/${GITHUB_REPO_NAME}/DEBIAN/copyright

      - name: Create Spec File
        run: PATH="REPO/.github/scripts:${PATH}" create_spec_file.sh

      - name: Build DEB Package
        run: dpkg-deb --build SOURCES/${GITHUB_REPO_NAME} "${{ env.GITHUB_REPO_NAME }}_${{ env.VERSION }}_${{ env.DEB_ARCHITECTURE }}.deb"

      - name: Build RPM Package
        run: sudo rpmbuild --define "_topdir $(pwd)" -bb SPECS/${GITHUB_REPO_NAME}.spec

      - name: Confirm builds complete
        run: sudo install -m 644 -o runner -g runner $(find . -type f -name *.deb && find . -type f -name *.rpm) release/

      - name: Release
        uses: softprops/action-gh-release@v1
        with:
          files: release/*

So this means I can, within reason, drop this workflow (plus a couple of other scripts to generate the slightly more complex RPM file – see the other files in that directory structure) into another package to release it.

OH WAIT, I DID! (for the terminate-notice-slack repo, for example!) All I actually needed to do there was to change the description line, and off it went!

So, this is all well and good, but how can I distribute these? Enter Repositories.

Making a Repository

Honestly, I took most of the work here from two fantastic blog posts for creating an RPM repo and a DEB repo.

First you need to create a GPG key.

To do this, I created the following pgp-key.batch file outside my repositories tree

%echo Generating an example PGP key
Key-Type: RSA
Key-Length: 4096
Name-Real: YOUR_ORG_NAME
Name-Email: your_org_name@users.noreply.github.com
Expire-Date: 0
%no-ask-passphrase
%no-protection
%commit

To make the key, I used this set of commands:

export GNUPGHOME="$(mktemp -d /tmp/pgpkeys-XXXXXX)"
gpg --no-tty --batch --gen-key pgp-key.batch
gpg --armor --export YOUR_ORG_NAME > public.asc
gpg --armor --export-secret-keys YOUR_ORG_NAME > private.asc
rm -Rf "$GNUPGHOME"

Store the public.asc file to one side (you’ll need it later) and keep the private.asc safe because we need to put that into Github.

Creating Github Pages

Create a new Git repository in your organisation called your-org.github.io. This marks the repository as being a Github Pages repository. Just to make that more explicit, in the settings for the repository, go to the pages section. (Note that yes, the text around this may differ, but are accurate as of 2023-03-28 in EN-GB localisation.)

Under “Source” select “GitHub Actions”.

Clone this repository to your local machine, and copy public.asc into the root of the tree with a sensible name, ending .asc.

In the Github settings, find “Secrets and variables” under “Security” and pick “Actions”.

Select “New repository secret” and call it “PRIVATE_KEY”.

Now you can use this to sign things (and you will sign *SO MUCH* stuff)

Building the HTML front to your repo (I’m using Jekyll)

I’ve elected to use Jekyll because I know it, and it’s quite easy, but you should pick what works for you. My workflow for deploying these repos into the website rely on Jekyll because Github built that integration, but you’ll likely find other tools for things like Eleventy or Hugo.

Put a file called _config.yml into the root directory, and fill it with relevant content:

title: your-org
email: email_address@example.org
description: >- 
  This project does stuff.
baseurl: ""
url: "https://your-org.github.io"
github_username: your-org

# Build settings
theme: minima
plugins:
  - jekyll-feed
exclude:
  - tools/
  - doc/

Naturally, make “your-org” “email_address@example.org” and the descriptions more relevant to your environment.

Next, create an index.md file with whatever is relevant for your org, but it must start with something like:

---
layout: home
title: YOUR-ORG Website
---
Here is the content for the front page.

Building the repo behind your static content

We’re back to working with Github Actions workflow files, so let’s pop that open.

.github/workflows/repo.yml

name: Deploy Debian and RPM Repo plus Jekyll homepage

on:
  push:
    branches: ["main"]
  # Allows you to run this workflow manually from the Actions tab
  workflow_dispatch:

permissions:
  contents: read
  pages: write
  id-token: write

concurrency:
  group: "pages"
  cancel-in-progress: false

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - name: Checkout
        uses: actions/checkout@v3

      - name: [REPO] Install required packages
        run: |
          until sudo apt update
          do
            sleep 1
          done
          sudo apt install -y jq createrepo-c coreutils gnupg2 dpkg-dev

      - name: [REPO] Insert environment variables
        run: |
          echo GNUPGHOME="$(mktemp -d /tmp/pgpkeys-XXXXXX)" >> $GITHUB_ENV
          echo REPO_OWNER="$(echo "${GITHUB_REPOSITORY}" | cut -d/ -f1)" >> $GITHUB_ENV
          echo REPO_NAME="$(echo "${GITHUB_REPOSITORY}" | cut -d/ -f2)" >> $GITHUB_ENV

      - name: [REPO] Import GPG key
        id: import_gpg
        uses: crazy-max/ghaction-import-gpg@v5
        with:
          gpg_private_key: ${{ secrets.PRIVATE_KEY }}

      - name: [JEKYLL] Setup Pages
        uses: actions/configure-pages@v3

      - name: [JEKYLL] Build with Jekyll
        uses: actions/jekyll-build-pages@v1
        with:
          source: ./
          destination: ./_site

      - name: [REPO] Set permissions on the _site directory
        run: sudo chown -R runner:docker _site

      - name: [REPO] Build DEB and RPM Repos
        run: |
          export GPG_FINGERPRINT="${{ steps.import_gpg.outputs.fingerprint }}"
          export ORIGIN="${{ steps.import_gpg.outputs.name }}"
          .github/scripts/build_repos.sh

      - name: [JEKYLL] Upload artifact
        uses: actions/upload-pages-artifact@v1

  deploy:
    environment:
      name: github-pages
      url: ${{ steps.deployment.outputs.page_url }}
    runs-on: ubuntu-latest
    needs: build
    steps:
      - name: [JEKYLL] Deploy to GitHub Pages
        id: deployment
        uses: actions/deploy-pages@v1

I’ve basically changed the “stock” Jekyll static site Github Actions file and added every step that starts [REPO] to make the repository stuff fit in around the steps that start [JEKYLL] which build and deploy the Jekyll based site.

The key part to all this though is the step Build DEB and RPM repos which calls a script that downloads all the RPM and DEB files from the various other repository build stages and does some actions to them. Now yes, I could have put all of this into the workflow.yml file, but I think it would have made it all a bit more confusing! So, let’s work through those steps!

Making an RPM Repo

To build a RPM repo you get and sign each of the RPM packages you want to offer. You do this with this command:

rpm --define "%_signature gpg" --define "%_gpg_name ${FINGERPRINT}" --addsign FILENAME.rpm

Then, once you have all your RPM files signed, you then run a command called createrepo_c (available in Debian archives – Github Actions doesn’t have a RedHat based distro available at this time, so I didn’t look for the RPM equivalent). This creates the repository metadata, and finally you sign that file, like this:

gpg --detach-sign --armor repodata/repomd.xml

Making a DEB Repo

To build a DEB repo you get each of the DEB packages you want to offer in a directory called pool/main (you can also call “main” something else – for example “contrib”, “extras” and so on).

Once you have all your files, you create another directory called dists/stable/main/binary-all into which we’ll run a command dpkg-scanpackages to create the list of the available packages. Yes, “main” could also be called “contrib”, “extras” and “stable” could be called “testing” or “preprod” or the name of your software release (like “jaunty”, “focal” or “warty”). The “all” after the word “binary” is the architecture in question.

dpkg-scanpackages creates an index of the packages in that directory including the version number, maintainer and the cryptographic hashes of the DEB files.

We zip (using gzip and bzip2) the Packages file it creates to improve the download speeds of these files, and then make a Release file. This in turn has the cryptographic hashes of each of the Packages and zipped Packages files, which in turn is then signed with GPG.

Ugh, that was MESSY

Making the repository available to your distributions

RPM repos have it quite easy here – there’s a simple file, that looks like this:

[org-name]
name=org-name Repository
baseurl=https://org-name.github.io/rpm
enabled=1
gpgcheck=1
gpgkey=https://org-name.github.io/public.asc

The distribution user simply downloads this file, puts it into /etc/yum.sources.d/org-name.repo and now all the packages are available for download. Woohoo!

DEB repos are a little harder.

First, download the public key – https://org-name.github.io/public.asc and put it in /etc/apt/keyrings/org-name.asc. Next, create file in /etc/apt/sources.list.d/org-name.list with this line in:

deb [arch=all signed-by=/etc/apt/keyrings/org-name.asc] https://org-name.github.io/deb stable main

And now they can install whatever packages they want too!

Doing this the simple way

Of course, this is all well-and-good, but if you’ve got a simple script you want to package, please don’t hesitate to use the .github directory I’m using for terminate-notice, which is available in the -skeleton repo and then to make it into a repo, you can reuse the .github directory in the terminate-notice.github.io repo to start your adventure.

Good luck, and let me know how it goes!

Featured image is “Some Math” by “Behdad Esfahbod” on Flickr and is released under a CC-BY license.

Responding to AWS Spot Instance “Instance Actions” (like terminate and stop)

During some debugging of an issue with our AWS Spot Instances at work, a colleague noticed that we weren’t responding to the Instance Actions that AWS sends when it’s due to shut down a spot instance.

We had a bit of a poke around, and found that no-one seems to have a service solution to respond to these events, to shut things down cleanly… so I wrote a set of shell scripts and a SystemD service to react to them.

On the journey, I discovered that there is a metadata mocking service that AWS provides, I learned how to create both RPM and DEB packages with Github actions (still not got them into a repo yet though!) and found that my new employer is really nice because they let me write this and release it as open source 😀

So, if this seems like something that might help you, or perhaps you’ve found a better way of doing this, let me know!

A screen shot of the github organisation for the terminate-notice script (link)

Project logo: Target icons created by Freepik – Flaticon

"Catch and Release" by "Trish Hamme" on Flickr

Releasing files for multiple operating systems with Github Actions in 2021

Hi! Long time, no see!

I’ve been working on my Decision Records open source project for a few months now, and I’ve finally settled on the cross-platform language Rust to create my script. As a result, I’ve got a build process which lets me build for Windows, Mac OS and Linux. I’m currently building a single, unsigned binary for each platform, and I wanted to make it so that Github Actions would build and release these three files for me. Most of the guidance which is currently out there points to some unmaintained actions, originally released by GitHub… but now they point to a 3rd party “release” action as their recommended alternative, so I thought I’d explain how I’m using it to release on several platforms at once.

Although I can go into detail about the release file I’m using for Rust-Decision-Records, I’m instead going to provide a much more simplistic view, based on my (finally working) initial test run.

GitHub Actions

GitHub have a built-in Continuous Integration, Continuous Deployment/Delivery (CI/CD) system, called GitHub Actions. You can have several activities it performs, and these are executed by way of instructions in .github/workflows/<somefile>.yml. I’ll be using .github/workflows/build.yml in this example. If you have multiple GitHub Action files you wanted to invoke (perhaps around issue management, unit testing and so on), these can be stored in separate .yml files.

The build.yml actions file will perform several tasks, separated out into two separate activities, a “Create Release” stage, and a “Build Release” stage. The Build stage will use a “Matrix” to execute builds on the three platforms at the same time – Linux AMD64, Windows and Mac OS.

The actual build steps? In this case, it’ll just be writing a single-line text file, stating the release it’s using.

So, let’s get started.

Create Release

A GitHub Release is typically linked to a specific “tagged” commit. To trigger the release feature, every time a commit is tagged with a string starting “v” (like v1.0.0), this will trigger the release process. So, let’s add those lines to the top of the file:

name: Create Release

on:
  push:
    tags:
      - 'v*'

You could just as easily use the filter pattern ‘v[0-9]+.[0-9]+.[0-9]+’ if you wanted to use proper Semantic Versioning, but this is a simple demo, right? 😉

Next we need the actual action we want to start with. This is at the same level as the “on” and “name” tags in that YML file, like this:

jobs:
  create_release:
    name: Create Release
    runs-on: ubuntu-latest
    steps:
      - name: Create Release
        id: create_release
        uses: softprops/action-gh-release@v1
        with:
          name: ${{ github.ref_name }}
          draft: false
          prerelease: false
          generate_release_notes: false

So, this is the actual “create release” job. I don’t think it matters what OS it runs on, but ubuntu-latest is the one I’ve seen used most often.

In this, you instruct it to create a simple release, using the text in the annotated tag you pushed as the release notes.

This is using a third-party release action, softprops/action-gh-release, which has not been vetted by me, but is explicitly linked from GitHub’s own action.

If you check the release at this point, (that is, without any other code working) you’d get just the source code as a zip and a .tgz file. BUT WE WANT MORE! So let’s build this mutha!

Build Release

Like with the create_release job, we have a few fields of instructions before we get to the actual actions it’ll take. Let’s have a look at them first. These instructions are at the same level as the jobs:\n create_release: line in the previous block, and I’ll have the entire file listed below.

  build_release:
    name: Build Release
    needs: create_release
    strategy:
      matrix:
        os: [ubuntu-latest, macos-latest, windows-latest]
        include:
          - os: ubuntu-latest
            release_suffix: ubuntu
          - os: macos-latest
            release_suffix: mac
          - os: windows-latest
            release_suffix: windows
    runs-on: ${{ matrix.os }}

So this section gives this job an ID (build_release) and a name (Build Release), so far, so exactly the same as the previous block. Next we say “You need to have finished the previous action (create_release) before proceeding” with the needs: create_release line.

But the real sting here is the strategy:\n matrix: block. This says “run these activities with several runners” (in this case, an unspecified Ubuntu, Mac OS and Windows release (each just “latest”). The include block asks the runners to add some template variables to the tasks we’re about to run – specifically release_suffix.

The last line in this snippet asks the runner to interpret the templated value matrix.os as the OS to use for this run.

Let’s move on to the build steps.

    steps:
      - name: Checkout code
        uses: actions/checkout@v2

      - name: Run Linux Build
        if: matrix.os == 'ubuntu-latest'
        run: echo "Ubuntu Latest" > release_ubuntu
      
      - name: Run Mac Build
        if: matrix.os == 'macos-latest'
        run: echo "MacOS Latest" > release_mac

      - name: Run Windows Build
        if: matrix.os == 'windows-latest'
        run: echo "Windows Latest" > release_windows

This checks out the source code on each runner, and then has a conditional build statement, based on the OS you’re using for each runner.

It should be fairly simple to see how you could build this out to be much more complex.

The final step in the matrix activity is to add the “built” file to the release. For this we use the softprops release action again.

      - name: Release
        uses: softprops/action-gh-release@v1
        with:
          tag_name: ${{ needs.create_release.outputs.tag-name }}
          files: release_${{ matrix.release_suffix }}

The finished file

So how does this all look when it’s done, this most simple CI/CD build script?

name: Create Release

on:
  push:
    tags:
      - 'v*'

jobs:
  create_release:
    name: Create Release
    runs-on: ubuntu-latest
    steps:
      - name: Create Release
        id: create_release
        uses: softprops/action-gh-release@v1
        with:
          name: ${{ github.ref_name }}
          draft: false
          prerelease: false
          generate_release_notes: false

  build_release:
    name: Build Release
    needs: create_release
    strategy:
      matrix:
        os: [ubuntu-latest, macos-latest, windows-latest]
        include:
          - os: ubuntu-latest
            release_suffix: ubuntu
          - os: macos-latest
            release_suffix: mac
          - os: windows-latest
            release_suffix: windows
    runs-on: ${{ matrix.os }}
    steps:
      - name: Checkout code
        uses: actions/checkout@v2

      - name: Run Linux Build
        if: matrix.os == 'ubuntu-latest'
        run: echo "Ubuntu Latest" > release_ubuntu
      
      - name: Run Mac Build
        if: matrix.os == 'macos-latest'
        run: echo "MacOS Latest" > release_mac

      - name: Run Windows Build
        if: matrix.os == 'windows-latest'
        run: echo "Windows Latest" > release_windows

      - name: Release
        uses: softprops/action-gh-release@v1
        with:
          tag_name: ${{ needs.create_release.outputs.tag-name }}
          files: release_${{ matrix.release_suffix }}

I hope this helps you!

My Sources and Inspirations

Featured image is “Catch and Release” by “Trish Hamme” on Flickr and is released under a CC-BY license.

"From one bloody orange!" by "Terry Madeley" on Flickr

Making Vagrant install the latest version of Ansible using Pip and run it as root in Ubuntu Virtual Machines

As previously mentioned, I use Ansible a lot inside Virtual machines orchestrated with Vagrant. Today’s brief tip is how to make Vagrant install the absolutely latest version of Ansible on Ubuntu boxes with Pip.

Here’s your Vagrantfile

Vagrant.configure("2") do |config|
  config.vm.box = "ubuntu/focal64"
  config.vm.provision "ansible_local", run: "always" do |ansible|
    ansible.playbook         = "setup.yml"
    ansible.playbook_command = "sudo ansible-playbook"
    ansible.install_mode     = "pip"
    ansible.pip_install_cmd  = "(until sudo apt update ; do sleep 1 ; done && sudo apt install -y python3-pip && sudo rm -f /usr/bin/pip && sudo ln -s /usr/bin/pip3 /usr/bin/pip && sudo -H pip install --upgrade pip) 2>&1 | tee -a /var/log/vagrant-init"
  end
end

“But, that pip_install_cmd block is huge”, I hear you cry!

Well, yes, but let’s split that out into a slightly more readable code block! (Yes, I’ve removed the “&&” for clarity sake – it just means “only execute the next command if this one worked”)

(
  # Wait until we get the apt "package lock" released
  until sudo apt update
  do
    # By sleeping for 1 second increments until it works
    sleep 1
  done

  # Then install python3-pip
  sudo apt install -y python3-pip

  # Just in case python2-pip is installed, delete it
  sudo rm -f /usr/bin/pip

  # And symbolically link pip3 to pip
  sudo ln -s /usr/bin/pip3 /usr/bin/pip

  # And then do a pip self-upgrade
  sudo -H pip install --upgrade pip

# And output this to the end of the file /var/log/vagrant-init, including any error messages
) 2>&1 | tee -a /var/log/vagrant-init

What does this actually do? Well, pip is the python package manager, so we’re asking for the latest packaged version to be installed (it often isn’t particularly with older releases of, well, frankly any Linux distribution) – this is the “pip_install_cmd” block. Then, once pip is installed, it’ll run “pip install ansible” – which will give it the latest version available to Pip, and then when that’s all done, it’ll run “sudo ansible-playbook /vagrant/setup.yml”

Featured image is “From one bloody orange!” by “Terry Madeley” on Flickr and is released under a CC-BY license.

"Router" by "Ryan Hodnett" on Flickr

Post-Config of a RaspberryPi Zero W as an OTG-USB Gadget that routes

In my last post in this series I mentioned that I’d got my Raspberry Pi Zero W to act as a USB Ethernet adaptor via libComposite, and that I was using DNSMasq to provide a DHCP service to the host computer (the one you plug the Pi into). In this part, I’m going to extend what local services I could provide on this device, and start to use this as a router.

Here’s what you missed last time… When you plug the RPi in (to receive power on the data line), it powers up the RPi Zero, and uses a kernel module called “libComposite” to turn the USB interface into an Ethernet adaptor. Because of how Windows and non-Windows devices handle network interfaces, we use two features of libComposite to create an ECM/CDC interface and a RNDIS interface, called usb0 and usb1, and whichever one of these two is natively supported in the OS, that’s which interface comes up. As a result, we can then use DNSMasq to “advertise” a DHCP address for each interface, and use that to advertise services on, like an SSH server.

By making this device into a router, we can use it to access the network, without using the in-built network adaptor (which might be useful if your in-built WiFi adaptors isn’t detected under Linux or Windows without a driver), or to protect your computer from malware (by adding a second firewall that doesn’t share the same network stack as it’s host), or perhaps to ensure that your traffic is sent over a VPN tunnel.

Read More
"DeBugged!" by "Randy Heinitz" on Flickr

Debugging Bash Scripts

Yesterday I was struggling a bit with a bash script I was writing. I needed to stop it from running flat out through every loop, and I wanted to see what certain values were at key points in the script.

Yes, I know I could use “read” to pause the script and “echo” to print values, but that leaves a lot of mess that I need to clean up afterwards… so I went looking for something else I could try.

You can have extensive debug statements, which are enabled with a --debug flag or environment variable… but again, messy.

You can run bash -x ./myscript.sh – and, indeed, I do frequently do that… but that shows you the commands which were run at each point, not what the outcome is of each of those commands.

If my problem had been a syntax one, I could have installed shellcheck, which is basically a linter for Bash and other shell scripting languages, but no, I needed more detail about what was happening during the processing.

Instead, I wanted something like xdebug (from PHP)… and I found Bash Debug for VSCode. This doesn’t even need you to install any scripts or services on the target machine – it’s interactive, and has a “watch” section, where you either highlight and right-click a variable expression (like $somevar or ${somevar}) to see when it changes. You can see where in the “callstack” you are and see what values are registered by that script.

Shellcheck shows me problems in my code…
But Bash Debug helps me to find out what values are at specific points in the code.

All in all, a worthy addition to my toolbelt!

Featured image is “DeBugged!” by “Randy Heinitz” on Flickr and is released under a CC-BY license.

"raspberry pie" by "stu_spivack" on Flickr

Post-Config of a RaspberryPi Zero W as an OTG-USB Gadget for off-device computing

History

A few months ago, I was working on a personal project that needed a separate, offline linux environment. I tried various different schemes to run what I was doing in the confines of my laptop and I couldn’t make what I was working on actually achieve my goals. So… I bought a Raspberry Pi Zero W and a “Solderless Zero Dongle“, with the intention of running Docker containers on it… unfortunately, while Docker runs on a Pi Zero, it’s really hard to find base images for the ARMv6/armhf platform that the Pi Zero W… so I put it back in the drawer, and left it there.

Roll forwards a month or so, and I was doing some experiments with Nebula, and only had an old Chromebook to test it on… except, I couldn’t install the Nebula client for Linux on there, and the Android client wouldn’t give me some features I wanted… so I broke out that old Pi Zero W again…

Now, while the tests with Nebula I was working towards will be documented later, I found that a lot of the documentation about using a Raspberry Pi Zero as a USB gadget were rough and unexplained. So, this post breaks down much of the content of what I found, what I tried, and what did and didn’t work.

Late Edit 2021-06-04: I spotted some typos around providing specific DHCP options for interfaces, based on work I’m doing elsewhere with this script. I’ve updated these values accordingly. I’ve also created a specific branch for this revision.

Late Edit 2021-06-06: I’ve noticed this document doesn’t cover IPv6 at all right now. I started to perform some tweaks to cover IPv6, but as my ISP has decided not to bother with IPv6, and won’t support Hurricane Electric‘s Tunnelbroker system, I can’t test any of it, without building out an IPv6 test environment… maybe soon, eh?

Read More
"The Guitar Template" by "Neil Williamson" on Flickr

Testing (and failing inline) for data types in Ansible

I tend to write long and overly complicated set_fact statements in Ansible, ALL THE DAMN TIME. I write stuff like this:

rulebase: |
  {
    {% for var in vars | dict2items %}
      {% if var.key | regex_search(regex_rulebase_match) | type_debug != "NoneType"
        and (
          var.value | type_debug == "dict" 
          or var.value | type_debug == "AnsibleMapping"
        ) %}
        {% for item in var.value | dict2items %}
          {% if item.key | regex_search(regex_rulebase_match) | type_debug != "NoneType"
            and (
              item.value | type_debug == "dict" 
              or item.value | type_debug == "AnsibleMapping"
            ) %}
            "{{ var.key | regex_replace(regex_rulebase_match, '\2') }}{{ item.key | regex_replace(regex_rulebase_match, '\2') }}": {
              {# This block is used for rulegroup level options #}
              {% for key in ['log_from_start', 'log', 'status', 'nat', 'natpool', 'schedule', 'ips_enable', 'ssl_ssh_profile', 'ips_sensor'] %}
                {% if var.value[key] is defined and rule.value[key] is not defined %}
                  {% if var.value[key] | type_debug in ['string', 'AnsibleUnicode'] %}
                    "{{ key }}": "{{ var.value[key] }}",
                  {% else %}
                    "{{ key }}": {{ var.value[key] }},
                  {% endif %}
                {% endif %}
              {% endfor %}
              {% for rule in item.value | dict2items %}
                {% if rule.key in ['sources', 'destinations', 'services', 'src_internet_service', 'dst_internet_service'] and rule.value | type_debug not in ['list', 'AnsibleSequence'] %}
                  "{{ rule.key }}": ["{{ rule.value }}"],
                {% elif rule.value | type_debug in ['string', 'AnsibleUnicode'] %}
                  "{{ rule.key }}": "{{ rule.value }}",
                {% else %}
                  "{{ rule.key }}": {{ rule.value }},
                {% endif %}
              {% endfor %}
            },
          {% endif %}
        {% endfor %}
      {% endif %}
    {% endfor %}
  }

Now, if you’re writing set_fact or vars like this a lot, what you tend to end up with is the dreaded dict2items requires a dictionary, got instead. which basically means “Hah! You wrote a giant blob of what you thought was JSON, but didn’t render right, so we cast it to a string for you!”

The way I usually write my playbooks, I’ll do something with this set_fact at line, let’s say, 10, and then use it at line, let’s say, 500… So, I don’t know what the bloomin’ thing looks like then!

So, how to get around that? Well, you could do a type check. In fact, I wrote a bloomin’ big blog post explaining just how to do that!

However, that gets unwieldy really quickly, and what I actually wanted to do was to throw the breaks on as soon as I’d created an invalid data type. So, to do that, I created a collection of functions which helped me with my current project, and they look a bit like this one, called “is_a_string.yml“:

- name: Type Check - is_a_string
  assert:
    quiet: yes
    that:
    - vars[this_key] is not boolean
    - vars[this_key] is not number
    - vars[this_key] | int | string != vars[this_key] | string
    - vars[this_key] | float | string != vars[this_key] | string
    - vars[this_key] is string
    - vars[this_key] is not mapping
    - vars[this_key] is iterable
    success_msg: "{{ this_key }} is a string"
    fail_msg: |-
      {{ this_key }} should be a string, and is instead
      {%- if vars[this_key] is not defined %} undefined
      {%- else %} {{ vars[this_key] is boolean | ternary(
        'a boolean',
        (vars[this_key] | int | string == vars[this_key] | string) | ternary(
          'an integer',
          (vars[this_key] | float | string == vars[this_key] | string) | ternary(
            'a float',
            vars[this_key] is string | ternary(
              'a string',
              vars[this_key] is mapping | ternary(
                'a dict',
                vars[this_key] is iterable | ternary(
                  'a list',
                  'unknown (' ~ vars[this_key] | type_debug ~ ')'
                )
              )
            )
          )
        )
      )}}{% endif %} - {{ vars[this_key] | default('unset') }}

To trigger this, I do the following:

- hosts: localhost
  gather_facts: false
  vars:
    SomeString: abc123
    SomeDict: {'somekey': 'somevalue'}
    SomeList: ['somevalue']
    SomeInteger: 12
    SomeFloat: 12.0
    SomeBoolean: false
  tasks:
  - name: Type Check - SomeString
    vars:
      this_key: SomeString
    include_tasks: tasks/type_check/is_a_string.yml
  - name: Type Check - SomeDict
    vars:
      this_key: SomeDict
    include_tasks: tasks/type_check/is_a_dict.yml
  - name: Type Check - SomeList
    vars:
      this_key: SomeList
    include_tasks: tasks/type_check/is_a_list.yml
  - name: Type Check - SomeInteger
    vars:
      this_key: SomeInteger
    include_tasks: tasks/type_check/is_an_integer.yml
  - name: Type Check - SomeFloat
    vars:
      this_key: SomeFloat
    include_tasks: tasks/type_check/is_a_float.yml
  - name: Type Check - SomeBoolean
    vars:
      this_key: SomeBoolean
    include_tasks: tasks/type_check/is_a_boolean.yml

I hope this helps you, bold traveller with complex jinja2 templating requirements!

(Oh, and if you get “template error while templating string: no test named 'boolean'“, you’re probably running Ansible which you installed using apt from Ubuntu Universe, version 2.9.6+dfsg-1 [or, at least I was!] – to fix this, use pip to install a more recent version – preferably using virtualenv first!)

Featured image is “The Guitar Template” by “Neil Williamson” on Flickr and is released under a CC-BY-SA license.

"Main console" by "Steve Parker" on Flickr

Running services (like SSH, nginx, etc) on Windows Subsystem for Linux (WSL1) on boot

I recently got a new laptop, and for various reasons, I’m going to be primarily running Windows on that laptop. However, I still like having a working SSH server, running in the context of my Windows Subsystem for Linux (WSL) environment.

Initially, trying to run service ssh start failed with an error, because you need to re-execute the ssh configuration steps which are missed in a WSL environment. To fix that, run sudo apt install --reinstall openssh-server.

Once you know your service runs OK, you start digging around to find out how to start it on boot, and you’ll see lots of people saying things like “Just run a shell script that starts your first service, and then another shell script for the next service.”

Well, the frustration for me is that Linux already has this capability – the current popular version is called SystemD, but a slightly older variant is still knocking around in modern linux distributions, and it’s called SystemV Init, often referred to as just “sysv” or “init.d”.

The way that those services work is that you have an “init” file in /etc/init.d and then those files have a symbolic link into a “runlevel” directory, for example /etc/rc3.d. Each symbolic link is named S##service or K##service, where the ## represents the order in which it’s to be launched. The SSH Daemon, for example, that I want to run is created in there as /etc/rc3.d/S01ssh.

So, how do I make this work in the grander scheme of WSL? I can’t use SystemD, where I could say systemctl enable --now ssh, instead I need to add a (yes, I know) shell script, which looks in my desired runlevel directory. Runlevel 3 is the level at which network services have started, hence using that one. If I was trying to set up a graphical desktop, I’d instead be looking to use Runlevel 5, but the X Windows system isn’t ported to Windows like that yet… Anyway.

Because the rc#.d directory already has this structure for ordering and naming services to load, I can just step over this directory looking for files which match or do not match the naming convention, and I do that with this script:

#! /bin/bash
function run_rc() {
  base="$(basename "$1")"
  if [[ ${base:0:1} == "S" ]]
  then
    "$1" start
  else
    "$1" stop
  fi
}

if [ "$1" != "" ] && [ -e "$1" ]
then
  run_rc "$1"
else
  rc=3
  if [ "$1" != "" ] && [ -e "/etc/rc${$1}.d/" ]
  then
    rc="$1"
  fi
  for digit1 in {0..9}
  do
    for digit2 in {0..9}
    do
      find "/etc/rc${rc}.d/" -name "[SK]${digit1}${digit2}*" -exec "$0" '{}' \; 2>/dev/null
    done
  done
fi

I’ve put this script in /opt/wsl_init.sh

This does a bit of trickery, but basically runs the bottom block first. It loops over the digits 0 to 9 twice (giving you 00, 01, 02 and so on up to 99) and looks in /etc/rc3.d for any file containing the filename starting S or K and then with the two digits you’ve looped to by that point. Finally, it runs itself again, passing the name of the file it just found, and this is where the top block comes in.

In the top block we look at the “basename” – the part of the path supplied, without any prefixed directories attached, and then extract just the first character (that’s the ${base:0:1} part) to see whether it’s an “S” or anything else. If it’s an S (which everything there is likely to be), it executes the task like this: /etc/rc3.d/S01ssh start and this works because it’s how that script is designed! You can run one of the following instances of this command: service ssh start, /etc/init.d/ssh start or /etc/rc3.d/S01ssh start. There are other options, notably “stop” or “status”, but these aren’t really useful here.

Now, how do we make Windows execute this on boot? I’m using NSSM, the “Non-sucking service manager” to add a line to the Windows System services. I placed the NSSM executable in C:\Program Files\nssm\nssm.exe, and then from a command line, ran C:\Program Files\nssm\nssm.exe install WSL_Init.

I configured it with the Application Path: C:\Windows\System32\wsl.exe and the Arguments: -d ubuntu -e sudo /opt/wsl_init.sh. Note that this only works because I’ve also got Sudo setup to execute this command without prompting for a password.

Here I invoke C:\Windows\System32\wsl.exe -d ubuntu -e sudo /opt/wsl_init.sh
I define the name of the service, as Services will see it, and also the description of the service.
I put in MY username and My Windows Password here, otherwise I’m not running WSL in my user context, but another one.

And then I rebooted. SSH was running as I needed it.

Featured image is “Main console” by “Steve Parker” on Flickr and is released under a CC-BY license.

"pharmacy" by "Tim Evanson" on Flickr

AWX – The Gateway Drug to Ansible Tower

A love letter to Ansible Tower

I love Ansible… I mean, I really love Ansible. You can ask anyone, and they’ll tell you my first love is my wife, then my children… and then it’s Ansible.

OK, maybe it’s Open Source and then Ansible, but either way, Ansible is REALLY high up there.

But, while I love Ansible, I love what Ansible Tower brings to an environment. See, while you get to easily and quickly manage a fleet of machines with Ansible, Ansible Tower gives you the fine grained control over what you need to expose to your developers, your ops team, or even, in a fit of “what-did-you-just-do”-ness, your manager. (I should probably mention that Ansible Tower is actually part of a much larger portfolio of products, called Ansible Automation Platform, and there’s some hosted SaaS stuff that goes with it… but the bit I really want to talk about is Tower, so I’ll be talking about Tower and not Ansible Automation Platform. Sorry!)

Ansible Tower has a scheduling engine, so you can have a “Go” button, for deploying the latest software to your fleet, or just for the 11PM patching cycle. It has a credential store, so your teams can’t just quickly go and perform an undocumented quick fix on that “flaky” box – they need to do their changes via Ansible. And lastly, it has an inventory, so you can see that the last 5 jobs failed to deploy on that host, so maybe you’ve got a problem with it.

One thing that people don’t so much love to do, is to get a license to deploy Tower, particularly if they just want to quickly spin up a demonstration for some colleagues to show how much THEY love Ansible. And for those people, I present AWX.

The first hit is free

One of the glorious and beautiful things that RedHat did, when they bought Ansible, was to make the same assertion about the Ansible products that they make to the rest of their product line, which is… while they may sell a commercial product, underneath it will be an Open Source version of that product, and you can be part of developing and improving that version, to help improve the commercial product. Thus was released AWX.

Now, I hear the nay-sayers commenting, “but what if you have an issue with AWX at 2AM, how do you get support on that”… and to those people, I reply: “If you need support at 2AM for your box, AWX is not the tool for you – what you need is Tower.”… Um, I mean Ansible Automation Platform. However, Tower takes a bit more setting up than what I’d want to do for a quick demo, and it has a few more pre-requisites. ANYWAY, enough about dealing with the nay-sayers.

AWX is an application inside Docker containers. It’s split into three parts, the AWX Web container, which has the REST API. There’s also a PostgreSQL database inside there too, and one “Engine”, which is the separate container which gets playbooks from your version control system, asks for any dynamic inventories, and then runs those playbooks on your inventories.

I like running demos of Tower, using AWX, because it’s reasonably easy to get stood up, and it’s reasonably close to what Tower looks and behaves like (except for the logos)… and, well, it’s a good gateway to getting people interested in what Tower can do for them, without them having to pay (or spend time signing up for evaluation licenses) for the environment in the first place.

And what’s more, it can all be automated

Yes, folks, because AWX is just a set of docker containers (and an install script), and Ansible knows how to start Docker containers (and run an install script), I can add an Ansible playbook to my cloud-init script, Vagrantfile or, let’s face it, when things go really wrong, put it in a bash script for some poor keyboard jockey to install for you.

If you’re running a demo, and you don’t want to get a POC (proof of concept) or evaluation license for Ansible Tower, then the chances are you’re probably not running this on RedHat Enterprise Linux (RHEL) either. That’s OK, once you’ve sold the room on using Tower (by using AWX), you can sell them on using RHEL too. So, I’ll be focusing on using CentOS 8 instead. Partially because there’s a Vagrant box for CentOS 8, but also because I can also use CentOS 8 on AWS, where I can prove that the Ansible Script I’m putting into my Vagrantfile will also deploy nicely via Cloud-Init too. With a very small number of changes, this is likely to work on anything that runs Docker, so everything from Arch to Ubuntu… probably 😁

“OK then. How can you work this magic, eh?” I hear from the back of the room. OK, pipe down, nay-sayers.

First, install Ansible on your host. You just need to run dnf install -y ansible.

Next, you need to install Docker. This is a marked difference between AWX and Ansible Tower, as AWX is based on Docker, but Ansible Tower uses other magic to make it work. When you’re selling the benefits of Tower, note that it’s not a 1-for-1 match at this point, but it’s not a big issue. Fortunately, CentOS can install Docker Community edition quite easily. At this point, I’m swapping to using Ansible playbooks. At the end, I’ll drop a link to where you can get all this in one big blob… In fact, we’re likely to use it with our Cloud-Init deployment.

Aw yehr, here’s the good stuff

tasks:
- name: Update all packages
  dnf:
    name: "*"
    state: latest

- name: Add dependency for "yum config-manager"
  dnf:
    name: yum-utils
    state: present

- name: Add the Docker Repo
  shell: yum config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
  args:
    creates: /etc/yum.repos.d/docker-ce.repo
    warn: false

- name: Install Docker
  dnf:
    name:
    - docker-ce
    - docker-ce-cli
    - containerd.io
    state: present
  notify: Start Docker

That first stanza – update all packages? Well, that’s because containerd.io relies on a newer version of libseccomp, which hasn’t been built in the CentOS 8 Vagrantbox I’m using.

The next one? That ensures I can run yum config-manager to add a repo. I could use the copy module in Ansible to create the repo files so yum and/or dnf could use that instead, but… meh, this is a single line shell command.

And then we install the repo, and the docker-ce packages we require. We use the “notify” statement to trigger a handler call to start Docker, like this:

handlers:
- name: Start Docker
  systemd:
    name: docker
    state: started

Fab. We’ve got Docker. Now, let’s clone the AWX repo to our machine. Again, we’re doing this with Ansible, naturally :)

tasks:
- name: Clone AWX repo to local path
  git:
    repo: https://github.com/ansible/awx.git
    dest: /opt/awx

- name: Get latest AWX tag
  shell: |
    if [ $(git status -s | wc -l) -gt 0 ]
    then
      git stash >/dev/null 2>&1
    fi
    git fetch --tags && git describe --tags $(git rev-list --tags --max-count=1)
    if [ $(git stash list | wc -l) -gt 0 ]
    then
      git stash pop >/dev/null 2>&1
    fi
  args:
    chdir: /opt/awx
  register: latest_tag
  changed_when: false

- name: Use latest released version of AWX
  git:
    repo: https://github.com/ansible/awx.git
    dest: /opt/awx
    version: "{{ latest_tag.stdout }}"

OK, there’s a fair bit to get from this, but essentially, we clone the repo from Github, then ask (using a collection of git commands) for the latest released version (yes, I’ve been bitten by just using the head of “devel” before), and then we check out that released version.

Fab, now we can configure it.

tasks:
- name: Set or Read admin password
  set_fact:
    admin_password_was_generated: "{{ (admin_password is defined or lookup('env', 'admin_password') != '') | ternary(false, true) }}"
    admin_password: "{{ admin_password | default (lookup('env', 'admin_password') | default(lookup('password', 'pw.admin_password chars=ascii_letters,digits length=20'), true) ) }}"

- name: Configure AWX installer
  lineinfile:
    path: /opt/awx/installer/inventory
    regexp: "^#?{{ item.key }}="
    line: "{{ item.key }}={{ item.value }}"
  loop:
  - key: "awx_web_hostname"
    value: "{{ ansible_fqdn }}"
  - key: "pg_password"
    value: "{{ lookup('password', 'pw.pg_password chars=ascii_letters,digits length=20') }}"
  - key: "rabbitmq_password"
    value: "{{ lookup('password', 'pw.rabbitmq_password chars=ascii_letters,digits length=20') }}"
  - key: "rabbitmq_erlang_cookie"
    value: "{{ lookup('password', 'pw.rabbitmq_erlang_cookie chars=ascii_letters,digits length=20') }}"
  - key: "admin_password"
    value: "{{ admin_password }}"
  - key: "secret_key"
    value: "{{ lookup('password', 'pw.secret_key chars=ascii_letters,digits length=64') }}"
  - key: "create_preload_data"
    value: "False"
  loop_control:
    label: "{{ item.key }}"

If we don’t already have a password defined, then create one. We register the fact we’ve had to create one, as we’ll need to tell ourselves it once the build is finished.

After that, we set a collection of values into the installer – the hostname, passwords, secret keys and so on. It loops over a key/value pair, and passes these to a regular expression rewrite command, so at the end, we have the settings we want, without having to change this script between releases.

When this is all done, we execute the installer. I’ve seen this done two ways. In an ideal world, you’d throw this into an Ansible shell module, and get it to execute the install, but the problem with that is that the AWX install takes quite a while, so I’d much rather actually be able to see what’s going on… and so, instead, we exit our prepare script at this point, and drop back to the shell to run the installer. Let’s look at both options, and you can decide which one you want to do. In my script, I’m doing the first, but just because it’s a bit neater to have everything in one place.

- name: Run the AWX install.
  shell: ansible-playbook -i inventory install.yml
  args:
    chdir: /opt/awx/installer
cd /opt/awx/installer
ansible-playbook -i inventory install.yml

When this is done, you get a prepared environment, ready to access using the username admin and the password of … well, whatever you set admin_password to.

AWX takes a little while to stand up, so you might want to run this next Ansible stanza to see when it’s ready to go.

- name: Test access to AWX
  tower_user:
    tower_host: "http://{{ ansible_fqdn }}"
    tower_username: admin
    tower_password: "{{ admin_password }}"
    email: "admin@{{ ansible_fqdn }}"
    first_name: "admin"
    last_name: ""
    password: "{{ admin_password }}"
    username: admin
    superuser: yes
    auditor: no
  register: _result
  until: _result.failed == false
  retries: 240 # retry 240 times
  delay: 5 # pause for 5 sec between each try

The upshot to using that command there is that it sets the email address of the admin account to “admin@your.awx.example.org“, if the fully qualified domain name (FQDN) of your machine is your.awx.example.org.

Moving from the Theoretical to the Practical

Now we’ve got our playbook, let’s wrap this up in both a Vagrant Vagrantfile and a Terraform script, this means you can deploy it locally, to test something internally, and in “the cloud”.

To simplify things, and because the version of Ansible deployed on the Vagrant box isn’t the one I want to use, I am using a single “user-data.sh” script for both Vagrant and Terraform. Here that is:

#!/bin/bash
if [ -e "$(which yum)" ]
then
  yum install git python3-pip -y
  pip3 install ansible docker docker-compose
else
  echo "This script only supports CentOS right now."
  exit 1
fi

git clone https://gist.github.com/JonTheNiceGuy/024d72f970d6a1c6160a6e9c3e642e07 /tmp/Install_AWX
cd /tmp/Install_AWX
/usr/local/bin/ansible-playbook Install_AWX.yml

While they both have their differences, they both can execute a script once the machine has finished booting. Let’s start with Vagrant.

Vagrant.configure("2") do |config|
  config.vm.box = "centos/8"

  config.vm.provider :virtualbox do |v|
    v.memory = 4096
  end

  config.vm.provision "shell", path: "user-data.sh"

  config.vm.network "forwarded_port", guest: 80, host: 8080, auto_correct: true
end

To boot this up, once you’ve got Vagrant and Virtualbox installed, run vagrant up and it’ll tell you that it’s set up a port forward from the HTTP port (TCP/80) to a “high” port – TCP/8080. If there’s a collision (because you’re running something else on TCP/8080), it’ll tell you what port it’s forwarded the HTTP port to instead. Once you’ve finished, run vagrant destroy to shut it down. There are lots more tricks you can play with Vagrant, but this is a relatively quick and easy one. Be aware that you’re not using HTTPS, so traffic to the AWX instance can be inspected, but if you’re running this on your local machine, it’s probably not a big issue.

How about running this on a cloud provider, like AWS? We can use the exact same scripts – both the Ansible script, and the user-data.sh script, using Terraform, however, this is a little more complex, as we need to create a VPC, Internet Gateway, Subnet, Security Group and Elastic IP before we can create the virtual machine. What’s more, the Free Tier (that “first hit is free” thing that Amazon Web Services provide to you) does not have enough horsepower to run AWX, so, if you want to look at how to run up AWX in EC2 (or to tweak it to run on Azure, GCP, Digital Ocean or one of the fine offerings from IBM or RedHat), then click through to the gist I’ve put all my code from this post into. The critical lines in there are to select a “CentOS 8” image, open HTTP and SSH into the machine, and to specify the user-data.sh file to provision the machine. Everything else is cruft to make the virtual machine talk to, and be seen by, hosts on the Internet.

To run this one, you need to run terraform init to load the AWS plugin, then terraform apply. Note that this relies on having an AWS access token defined, so if you don’t have them set up, you’ll need to get that sorted out first. Once you’ve finished with your demo, you should run terraform destroy to remove all the assets created by this terraform script. Again, when you’re running that demo, note that you ONLY have HTTP access set up, not HTTPS, so don’t use important credentials on there!

Once you’ve got your AWX environment running, you’ve got just enough AWX there to demo what Ansible Tower looks like, what it can bring to your organisation… and maybe even convince them that it’s worth investing in a license, rather than running AWX in production. Just in case you have that 2AM call-out that we all dread.

Featured image is “pharmacy” by “Tim Evanson” on Flickr and is released under a CC-BY-SA license.