"Seca" by "Olearys" on Flickr

Getting Started with Terraform on Azure

I’m strongly in the “Ansible is my tool, what needs fixing” camp, when it comes to Infrastructure as Code (IaC) but, I know there are other tools out there which are equally as good. I’ve been strongly advised to take a look at Terraform from HashiCorp. I’m most familiar at the moment with Azure, so this is going to be based around resources available on Azure.


Late edit: I want to credit my colleague, Pete, for his help getting started with this. While many of the code samples have been changed from what he provided me with, if it hadn’t been for these code samples in the first place, I’d never have got started!

Late edit 2: This post was initially based on Terraform 0.11, and I was prompted by another colleague, Jon, that the available documentation still follows the 0.11 layout. 0.12 was released in May, and changes how variables are reused in the code. This post now *should* follow the 0.12 conventions, but if you spot something where it doesn’t, check out this post from the Terraform team.


As with most things, there’s a learning curve, and I struggled to find a “simple” getting started guide for Terraform. I’m sure this is a failing on my part, but I thought it wouldn’t hurt to put something out there for others to pick up and see if it helps someone else (and, if that “someone else” is you, please let me know in the comments!)

Pre-requisites

You need an Azure account for this. This part is very far outside my spectrum of influence, but I’m assuming you’ve got one. If not, look at something like Digital Ocean, AWS or VMWare :) For my “controller”, I’m using Windows Subsystem for Linux (WSL), and wrote the following notes about getting my pre-requisites.

Building the file structure

One quirk with Terraform, versus other tools like Ansible, is that when you run one of the terraform commands (like terraform init, terraform plan or terraform apply), it reads the entire content of any file suffixed “tf” in that directory, so if you don’t want a file to be loaded, you need to either move it out of the directory, comment it out, or rename it so it doesn’t end .tf. By convention, you normally have three “standard” files in a terraform directory – main.tf, variables.tf and output.tf, but logically speaking, you could have everything in a single file, or each instruction in it’s own file. Because this is a relatively simple script, I’ll use this standard layout.

The actions I’ll be performing are the “standard” steps you’d perform in Azure to build a single Infrastructure as a Service (IAAS) server service:

  • Create your Resource Group (RG)
  • Create a Virtual Network (VNET)
  • Create a Subnet
  • Create a Security Group (SG) and rules
  • Create a Public IP address (PubIP) with a DNS name associated to that IP.
  • Create a Network Interface (NIC)
  • Create a Virtual Machine (VM), supplying a username and password, the size of disks and VM instance, and any post-provisioning instructions (yep, I’m using Ansible for that :) ).

I’m using Visual Studio Code, but almost any IDE will have integrations for Terraform. The main thing I’m using it for is auto-completion of resource, data and output types, also the fact that control+clicking resource types opens your browser to the documentation page on terraform.io.

So, creating my main.tf, I start by telling it that I’m working with the Terraform AzureRM Provider (the bit of code that can talk Azure API).

This simple statement is enough to get Terraform to load the AzureRM, but it still doesn’t tell Terraform how to get access to the Azure account. Use az login from a WSL shell session to authenticate.

Next, we create our basic resource, vnet and subnet resources.

But wait, I hear you cry, what are those var.something bits in there? I mentioned before that in the “standard” set of files is a “variables.tf” file. In here, you specify values for later consumption. I have recorded variables for the resource group name and location, as well as the VNet name and subnet name. Let’s add those into variables.tf.

When you’ve specified a resource, you can capture any of the results from that resource to use later – either in the main.tf or in the output.tf files. By creating the resource group (called “rg” here, but you can call it anything from “demo” to “myfirstresourcegroup”), we can consume the name or location with azurerm_resource_group.rg.name and azurerm_resource_group.rg.location, and so on. In the above code, we use the VNet name in the subnet, and so on.

After the subnet is created, we can start adding the VM specific parts – a security group (with rules), a public IP (with DNS name) and a network interface. I’ll create the VM itself later. So, let’s do this.

BUT WAIT, what’s that ${trimspace(data.http.icanhazip.body)}/32 bit there?? Any resources we want to load from the terraform state, but that we’ve not directly defined ourselves needs to come from somewhere. These items are classed as “data” – that is, we want to know what their values are, but we aren’t *changing* the service to get it. You can also use this to import other resource items, perhaps a virtual network that is created by another team, or perhaps your account doesn’t have the rights to create a resource group. I’ll include a commented out data block in the overall main.tf file for review that specifies a VNet if you want to see how that works.

In this case, I want to put the public IP address I’m coming from into the NSG Rule, so I can get access to the VM, without opening it up to *everyone*. I’m not that sure that my IP address won’t change between one run and the next, so I’m using the icanhazip.com service to determine my IP address. But I’ve not defined how to get that resource yet. Let’s add it to the main.tf for now.

So, we’re now ready to create our virtual machine. It’s quite a long block, but I’ll pull certain elements apart once I’ve pasted this block in.

So, this is broken into four main pieces.

  • Virtual Machine Details. This part is relatively sensible. Name RG, location, NIC, Size and what happens to the disks when the machine powers on. OK.
name                             = "iaas-vm"
location                         = azurerm_resource_group.rg.location
resource_group_name              = azurerm_resource_group.rg.name
network_interface_ids            = [azurerm_network_interface.iaasnic.id]
vm_size                          = "Standard_DS1_v2"
delete_os_disk_on_termination    = true
delete_data_disks_on_termination = true
  • Disk details.
storage_image_reference {
  publisher = "Canonical"
  offer     = "UbuntuServer"
  sku       = "18.04-LTS"
  version   = "latest"
}
storage_os_disk {
  name              = "iaas-os-disk"
  caching           = "ReadWrite"
  create_option     = "FromImage"
  managed_disk_type = "Standard_LRS"
}
  • OS basics: VM Hostname, username of the first user, and it’s password. Note, if you want to use an SSH key, this must be stored for Terraform to use without passphrase. If you mention an SSH key here, as well as a password, this can cause all sorts of connection issues, so pick one or the other.
os_profile {
  computer_name  = "iaas"
  admin_username = var.ssh_user
  admin_password = var.ssh_password
}
os_profile_linux_config {
  disable_password_authentication = false
}
  • And lastly, provisioning. I want to use Ansible for my provisioning. In this example, I have a basic playbook stored locally on my Terraform host, which I transfer to the VM, install Ansible via pip, and then execute ansible-playbook against the file I uploaded. This could just as easily be a git repo to clone or a shell script to copy in, but this is a “simple” example.
provisioner "remote-exec" {
  inline = ["mkdir /tmp/ansible"]

  connection {
    type     = "ssh"
    host     = azurerm_public_ip.iaaspubip.fqdn
    user     = var.ssh_user
    password = var.ssh_password
  }
}

provisioner "file" {
  source = "ansible/"
  destination = "/tmp/ansible"

  connection {
    type     = "ssh"
    host     = azurerm_public_ip.iaaspubip.fqdn
    user     = var.ssh_user
    password = var.ssh_password
  }
}

provisioner "remote-exec" {
  inline = [
    "sudo apt update > /tmp/apt_update || cat /tmp/apt_update",
    "sudo apt install -y python3-pip > /tmp/apt_install_python3_pip || cat /tmp/apt_install_python3_pip",
    "sudo -H pip3 install ansible > /tmp/pip_install_ansible || cat /tmp/pip_install_ansible",
    "ansible-playbook /tmp/ansible/main.yml"
  ]

  connection {
    type     = "ssh"
    host     = azurerm_public_ip.iaaspubip.fqdn
    user     = var.ssh_user
    password = var.ssh_password
  }
}

This part of code is done in three parts – create upload path, copy the files in, and then execute it. If you don’t create the upload path, it’ll upload just the first file it comes to into the path specified.

Each remote-exec and file provisioner statement must include the hostname, username and either the password, or SSH private key. In this example, I provide just the password.

So, having created all this lot, you need to execute the terraform workload. Initially you do terraform init. This downloads all the provisioners and puts them into the same tree as these .tf files are stored in. It also resets the state of the terraform discovered or created datastore.

Next, you do terraform plan -out tfout. Technically, the tfout part can be any filename, but having something like tfout marks it as clearly part of Terraform. This creates the tfout file with the current state, and whatever needs to change in the Terraform state file on it’s next run. Typically, if you don’t use a tfout file within about 20 minutes, it’s probably worth removing it.

Finally, once you’ve run your plan stage, now you need to apply it. In this case you execute terraform apply tfout. This tfout is the same filename you specified in terraform plan. If you don’t include -out tfout on your plan (or even run a plan!) and tfout in your apply, then you can skip the terraform plan stage entirely.

When I ran this, with a handful of changes to the variable files, I got this result:

Once you’re done with your environment, use terraform destroy to shut it all down… and enjoy :)

The full source is available in the associated Gist. Pull requests and constructive criticism are very welcome!

Featured image is “Seca” by “Olearys” on Flickr and is released under a CC-BY license.

"Tower" by " Yijun Chen" on Flickr

Building a Gitlab and Ansible Tower (AWX) Demo in Vagrant with Ansible

TL;DR – I created a repository on GitHub‌ containing a Vagrantfile and an Ansible Playbook to build a VM running Docker. That VM hosts AWX (Ansible Tower’s upstream open-source project) and Gitlab.

A couple of years ago, a colleague created (and I enhanced) a Vagrant and Ansible playbook called “Project X” which would run an AWX instance in a Virtual Machine. It’s a bit heavy, and did a lot of things to do with persistence that I really didn’t need, so I parked my changes and kept an eye on his playbook…

Fast-forward to a week-or-so ago. I needed to explain what a Git/Ansible Workflow would look like, and so I went back to look at ProjectX. Oh my, it looks very complex and consumed a lot of roles that, historically, I’ve not been that impressed with… I just needed the basics to run AWX. Oh, and I also needed a Gitlab environment.

I knew that Gitlab had a docker-based install, and so does AWX, so I trundled off to find some install guides. These are listed in the playbook I eventually created (hence not listing them here). Not all the choices I made were inspired by those guides – I wanted to make quite a bit of this stuff “build itself”… this meant I wanted users, groups and projects to be created in Gitlab, and users, projects, organisations, inventories and credentials to be created in AWX.

I knew that you can create Docker Containers in Ansible, so after I’d got my pre-requisites built (full upgrade, docker installed, pip libraries installed), I add the gitlab-ce:latest docker image, and expose some ports. Even now, I’m not getting the SSH port mapped that I was expecting, but … it’s no disaster.

I did notice that the Gitlab service takes ages to start once the container is marked as running, so I did some more digging, and found that the uri module can be used to poll a URL. It wasn’t documented well how you can make it keep polling until you get the response you want, so … I added a PR on the Ansible project’s github repo for that one (and I also wrote a blog post about that earlier too).

Once I had a working Gitlab service, I needed to customize it. There are a bunch of Gitlab modules in Ansible but since a few releases back of Gitlab, these don’t work any more, so I had to find a different way. That different way was to run an internal command called “gitlab-rails”. It’s not perfect (so it doesn’t create repos in your projects) but it’s pretty good at giving you just enough to build your demo environment. So that’s getting Gitlab up…

Now I need to build AWX. There’s lots of build guides for this, but actually I had most luck using the README in their repository (I know, who’d have thought it!??!) There are some “Secrets” that should be changed in production that I’m changing in my script, but on the whole, it’s pretty much a vanilla install.

Unlike the Gitlab modules, the Ansible Tower modules all work, so I use these to create the users, credentials and so-on. Like the gitlab-rails commands, however, the documentation for using the tower modules is pretty ropey, and I still don’t have things like “getting your users to have access to your organisation” working from the get-go, but for the bulk of the administration, it does “just work”.

Like all my playbooks, I use group_vars to define the stuff I don’t want to keep repeating. In this demo, I’ve set all the passwords to “Passw0rd”, and I’ve created 3 users in both AWX and Gitlab – csa, ops and release – indicative of the sorts of people this demo I ran was aimed at – Architects, Operations and Release Managers.

Maybe, one day, I’ll even be able to release the presentation that went with the demo ;)

On a more productive note, if you’re doing things with the tower_ modules and want to tell me what I need to fix up, or if you’re doing awesome things with the gitlab-rails tool, please visit the repo with this automation code in, and take a look at some of my “todo” items! Thanks!!

Featured image is “Tower” by “Yijun Chen” on Flickr and is released under a CC-BY-SA license.

"funfair action" by "Jon Bunting" on Flickr

Improving the speed of Azure deployments in Ansible with Async

Recently I was building a few environments in Azure using Ansible, and found this stanza which helped me to speed things up.

  - name: "Schedule UDR Creation"
    azure_rm_routetable:
      resource_group: "{{ resource_group }}"
      name: "{{ item.key }}_udr"
    loop: "{{ routetables | dict2items }}"
    loop_control:
        label: "{{ item.key }}_udr"
    async: 1000
    poll: 0
    changed_when: False
    register: sleeper

  - name: "Check UDRs Created"
    async_status:
      jid: "{{ item.ansible_job_id }}"
    register: sleeper_status
    until: sleeper_status.finished
    retries: 500
    delay: 4
    loop: "{{ sleeper.results|flatten(levels=1) }}"
    when: item.ansible_job_id is defined
    loop_control:
      label: "{{ item._ansible_item_label }}"

What we do here is to start an action with an “async” time (to give the Schedule an opportunity to register itself) and a “poll” time of 0 (to prevent the Schedule from waiting to be finished). We then tell it that it’s “never changed” (changed_when: False) because otherwise it always shows as changed, and to register the scheduled item itself as a “sleeper”.

After all the async jobs get queued, we then check the status of all the scheduled items with the async_status module, passing it the registered job ID. This lets me spin up a lot more items in parallel, and then “just” confirm afterwards that they’ve been run properly.

It’s not perfect, and it can make for rather messy code. But, it does work, and it’s well worth giving it the once over, particularly if you’ve got some slow-to-run tasks in your playbook!

Featured image is “funfair action” by “Jon Bunting” on Flickr and is released under a CC-BY license.

A web browser with the example.com web page loaded

Working around the fact that Ansible’s URI module doesn’t honour the no_proxy variable…

An Ansible project I’ve been working on has tripped me up this week. I’m working with some HTTP APIs and I need to check early whether I can reach the host. To do this, I used a simple Ansible Core Module which lets you call an HTTP URI.

- uri:
    follow_redirects: none
    validate_certs: False
    timeout: 5
    url: "http{% if ansible_https | default(True) %}s{% endif %}://{{ ansible_host }}/login"
  register: uri_data
  failed_when: False
  changed_when: False

This all seems pretty simple. One of the environments I’m working in uses the following values in their environment:

http_proxy="http://192.0.2.1:8080"
https_proxy="http://192.0.2.1:8080"
no_proxy="10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24"

And this breaks the uri module, because it tries to punt everything through the proxy if the “no_proxy” contains CIDR values (like 192.0.2.0/24) (there’s a bug raised for this)… So here’s my fix!

- set_fact:
    no_proxy_match: |
      {
        {% for no_proxy in (lookup('env', 'no_proxy') | replace(',', '') ).split() %}
          {% if no_proxy| ipaddr | type_debug != 'NoneType' %}
            {% if ansible_host | ipaddr(no_proxy) | type_debug != 'NoneType' %}
              "match": "True"
            {% endif %}
          {% endif %}
        {% endfor %}
      }

- uri:
    follow_redirects: none
    validate_certs: False
    timeout: 5
    url: "http{% if ansible_https | default(True) %}s{% endif %}://{{ ansible_host }}/login"
  register: uri_data
  failed_when: False
  changed_when: False
  environment: "{ {% if no_proxy_match.match | default(False) %}'no_proxy': '{{ ansible_host }}'{% endif %} }"

So, let’s break this down.

The key part to this script is that we need to override the no_proxy environment variable with the IP address that we’re trying to address (so that we’re not putting 16M addresses for 10.0.0.0/8 into no_proxy, for example). To do that, we use the exact same URI block, except for the environment line at the end.

In turn, the set_fact block steps through the no_proxy values, looking for IP Addresses to check ({% if no_proxy | ipaddr ... %}‌ says “if the no_proxy value is an IP Address, return it, but if it isn’t, return a ‘None’ value”) and if it’s an IP address or subnet mask, it checks to see whether the IP address of the host you’re trying to reach falls inside that IP Address or Subnet Mask ({% if ansible_host | ipaddr(no_proxy) ... %} says “if the ansible_host address falls inside the no_proxy range, then return it, otherwise return a ‘None’ value”). Both of these checks say “If this previous check returns anything other than a ‘None’ value, do the next thing”, and on the last check, the “next” thing is to set the flag ‘match’ to ‘true’. When we get to the environment variable, we say “if match is not true, it’s false, so don’t put a value in there”.

So that’s that! Yes, I could merge the set_fact block into the environment variable, but I do end up using that a fair amount. And really, if it was merged, that would be even MORE complicated to pick through.

I have raised a pull request on the Ansible project to update the documentation, so we’ll see whether we end up with people over here looking for ways around this issue. If so, let me know in the comments below! Thanks!!

One to read: A Beginner’s Guide to IPFS

One to read: “A Beginner’s Guide to IPFS”

Ever wondered about IPFS (the “Inter Planetary File System”) – a new way to share and store content. This doesn’t rely on a central server (e.g. Facebook, Google, Digital Ocean, or your home NAS) but instead uses a system like bittorrent combined with published records to keep the content in the system.

If your host goes down (where the original content is stored) it’s also cached on other nodes who have visited your site.

These caches are cleared over time, so are suitable for short outages, or you can have other nodes who “pin” your content (and this can be seen as a paid solution that can fund hosts).

IPFS is great at hosting static content, but how to deal with dynamic content? That’s where PubSub comes into play (which isn’t in this article). There’s a database service which sits on IPFS and uses PubSub to sync data content across the network, called Orbit-DB.

It’s looking interesting, especially in light of the announcement from CloudFlare about their introduction of an available IPFS gateway.

It’s looking good for IPFS!

This was automatically posted from my RSS Reader, and may be edited later to add commentary.

One to read/watch: IPsec and IKE Tutorial

Ever been told that IPsec is hard? Maybe you’ve seen it yourself? Well, Paul Wouters and Sowmini Varadhan recently co-delivered a talk at the NetDev conference, and it’s really good.

Sowmini’s and Paul’s slides are available here: https://www.files.netdevconf.org/d/a18e61e734714da59571/

A complete recording of the tutorial is here. Sowmini’s part of the tutorial (which starts first in the video) is quite technically complex, looking at specifically the way that Linux handles the packets through the kernel. I’ve focused more on Paul’s part of the tutorial (starting at 26m23s)… but my interest was piqued from 40m40s when he starts to actually show how “easy” configuration is. There are two quick run throughs of typical host-to-host IPsec and subnet-to-subnet IPsec tunnels.

A key message for me, which previously hadn’t been at all clear in IPsec using {free,libre,open}swan is that they refer to Left and Right as being one party and the other… but the node itself works out if it’s “left” or “right” so the *SAME CONFIG* can be used on both machines. GENIUS.

Also, when you’re looking at the config files, anything prefixed with an @ symbol is something that doesn’t need resolving to something else.

It’s well worth a check-out, and it’s inspired me to take another look at IPsec for my personal VPNs :)

I should note that towards the end, Paul tried to run a selection of demonstrations in Opportunistic Encryption (which basically is a way to enable encryption between two nodes, even if you don’t have a pre-established VPN with them). Because of issues with the conference wifi, plus the fact that what he’s demoing isn’t exactly production-grade yet, it doesn’t really work right, and much of the rest of the video (from around 1h10m) is him trying to show that working while attendees are running through the lab, and having conversations about those labs with the attendees.

Podcast/Talk Summary – OggCamp “Main stage ‘Extravaganza'”

Format: Five podcasting guys standing in front of an audience. No slides. Discussion. 200ish attendees

Audio: https://latenightlinux.com/late-night-linux-extra-episode-05/

Slot: Slot 9 Saturday (Closing Session) 16:00-17:00

Notes: My first main stage show. Two questions proposed by the podcasters and a discussion with the audience. Slightly waffly on my part, mostly because I was tired. I also was taking the “mic around to the audience”. Skilfully mastered by Joe Ressington.

Well worth a listen – I’d like to know your views on anything raised in the podcast in the comments!

Oh, and at the end, I tried to make a point, but couldn’t remember the exact quote – here it is: “Be who you needed when you were younger” – Brad Montague

Enjoy :)

Experiments with USBIP on Raspberry Pi

At home, I have a server on which I run my VMs and store my content (MP3/OGG/FLAC files I have ripped from my CDs, Photos I’ve taken, etc.) and I want to record material from FreeSat to play back at home, except the server lives in my garage, and the satellite dish feeds into my Living Room. I bought a TeVii S660 USB FreeSat decoder, and tried to figure out what to do with it.

I previously stored the server near where the feed comes in, but the running fan was a bit annoying, so it got moved… but then I started thinking – what if I ran a Raspberry Pi to consume the media there.

I tried running OpenElec, and then LibreElec, and while both would see the device, and I could even occasionally get *content* out of it, I couldn’t write quick enough to the media devices attached to the RPi to actually record what I wanted to get from it. So, I resigned myself to the fact I wouldn’t be recording any of the Christmas Films… until I stumbled over usbip.

USBIP is a service which binds USB ports to a TCP port, and then lets you consume that USB port on another machine. I’ll discuss consuming the S660’s streams in another post, but the below DOES work :)

There are some caveats here. Because I’m using a Raspberry Pi, I can’t just bung on any old distribution, so I’m a bit limited here. I prefer Debian based images, so I’m going to artificially limit myself to these for now, but if I have any significant issues with these images, then I’ll have to bail on Debian based, and use something else.

  1. If I put on stock Raspbian Jessie, I can’t use usbip, because while ships its own kernel that has the right tools built-in (the usbip_host, usbip_core etc.), it doesn’t ship the right userland tools to manipulate it.
  2. If I’m using a Raspberry Pi 3, there’s no supported version of Ubuntu Server which ships for it. I can use a flavour (e.g. Ubuntu Mate), but that uses the Raspbian kernel, which, as I mentioned before, is not shipping the right userland tools.
  3. If I use a Raspberry Pi 2, then I can use Stock Ubuntu, which ships the right tooling. Now all I need to do is find a CAT5 cable, and some way to patch it through to my network…

Getting the Host stood up

I found most of my notes on this via a wiki entry at Github but essentially, it boils down to this:

On your host machine, (where the USB port is present), run

sudo apt-get install linux-tools-generic
sudo modprobe usbip_host
sudo usbipd -D

This confirms that your host can present the USB ports over the USBIP interface (there are caveats! I’ll cover them later!!).

You now need to find which ports you want to serve. Run this command to list the ports on your system:

lsusb

You’ll get something like this back:

Bus 001 Device 004: ID 9022:d662 TeVii Technology Ltd.
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. SMSC9512/9514 Fast Ethernet Adapter
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp. SMC9514 Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

And then you need to find which port the device thinks it’s attached to. Run this to see how usbip sees the world:

usbip list -l

This will return:

- busid 1-1.1 (0424:ec00)
unknown vendor : unknown product (0424:ec00)
- busid 1-1.3 (9022:d662)
unknown vendor : unknown product (9022:d662)

We want to share the TeVii device, which has the ID 9022:d662, and we can see that this is present as busid 1-1.3, so we now we need to bind it to the usbip system, with this command:

usbip bind -b 1-1.3

OK, so now we’re presenting this to the system. Perhaps you might want to make it available on a reboot?

echo "usbip_host" >> /etc/modules

I also added @reboot /usr/bin/usbipd -D ; sleep 5 ; /usr/bin/usbip bind -b 1-1.3 to root’s crontab, but it should probably go into a systemd unit.

Getting the Guest stood up

All these actions are being performed as root. As before, let’s get the modules loaded in the kernel:

apt-get install linux-tools-generic
modprobe vhci-hcd

Now, we can try to attach the module over the wire. Let’s check what’s offered to us (this code example uses 192.0.2.1 but this would be the static IP of your host):

usbip list -r 192.0.2.1

This hands up back the list of offered appliances:

Exportable USB devices
======================
- 192.0.2.1
1-1.3: TeVii Technology Ltd. : unknown product (9022:d662)
: /sys/devices/platform/soc/3f980000.usb/usb1/1-1/1-1.3
: (Defined at Interface level) (00/00/00)
: 0 - Vendor Specific Class / unknown subclass / unknown protocol (ff/01/01)

So, now all we need to do is attach it:

usbip attach -r 192.0.2.1 -b 1-1.3

Now I can consume the service from that device in tvheadend on my server. However, again, I need to make this persistent. So, let’s make sure the module is loaded on boot.

echo 'vhci-hcd' >> /etc/modules

And, finally, we need to attach the port on boot. Again, I’m using crontab, but should probably wrap this into a systemd service.

@reboot /usr/bin/usbip attach -r 192.0.2.1 -b 1-1.3

And then I had an attached USB device across my network!

Unfortuately, the throughput was a bit too low (due to silly ethernet-over-power adaptors) to make it work the way I wanted… but theoretically, if I had proper patching done in this house, it’d be perfect! :)

Interestingly, the day I finished this post off (after it’d sat in drafts since December), I spotted that one of the articles in Linux Magazine is “USB over the network with USB/IP”. Just typical! :D

Using Python-OpenstackClient and Ansible with K5

Recently, I have used K5, which is an instance of OpenStack, run by Fujitsu (my employer). To do some of the automation tasks I have played with both python-openstackclient and Ansible. This post is going to cover how to get those tools to work with K5.

I have access to a Linux virtual machine (Ubuntu 16.04) and the Windows Subsystem for Linux in Windows 10 to run “Bash on Ubuntu on Windows”, and both accept the same set of commands.

In order to run these commands, you need a couple of dependencies. Your mileage might vary with other Linux distributions, but, for Ubuntu based distributions, run this command:

sudo apt install python-pip build-essential libssl-dev libffi-dev python-dev

Next, use pip to install the python modules you need:

sudo -H pip install shade==1.11.1 ansible cryptography python-openstackclient

If you’re only ever going to be working with a single project, you can define a handful of environment variables prefixed OS_, like this:

export OS_USERNAME=BloggsF
export OS_PASSWORD=MySuperSecretPasswordIsHere
export OS_REGION_NAME=uk-1
export OS_USER_DOMAIN_NAME=YourProjectName
export OS_PROJECT_NAME=YourProjectName-prj
export OS_PROJECT_ID=baddecafbaddecafbaddecafbaddecaf
export OS_AUTH_URL=https://identity.uk-1.cloud.global.fujitsu.com/v3
export OS_VOLUME_API_VERSION=2
export OS_IDENTITY_API_VERSION=3

But, if you’re working with a few projects, it’s probably worth separating these out into clouds.yml files. This would be stored in ~/.config/openstack/clouds.yml with the credentials for the environment you’re using:

---
clouds:
  root:
    identity_api_version: 3
    regions:
    - uk-1
    auth:
      auth_url: https://identity.uk-1.cloud.global.fujitsu.com/v3
      password: MySuperSecretPasswordIsHere
      project_id: baddecafbaddecafbaddecafbaddecaf
      project_name: YourProjectName-prj
      username: BloggsF
      user_domain_name: YourProjectName

Optionally, you can separate out the password, username or any other “sensitive” information into a secure.yml file stored in the same location (removing those lines from the clouds.yml file), like this:

---
clouds:
  root:
    auth:
      password: MySuperSecretPasswordIsHere

Now, you can use the Python based Openstack Client, using this invocation:

openstack --os-cloud root server list

Alternatively you can use the Ansible Openstack (and K5) modules, like this:

---
tasks:
- name: "Authenticate to K5"
  k5_auth:
    cloud: root
  register: k5_auth_reg
- name: "Create Network"
  k5_create_network:
    name: "Public"
    availability_zone: "uk-1a"
    state: present
    k5_auth: "{{ k5_auth_reg.k5_auth_facts }}"
- name: "Create Subnet"
  k5_create_subnet:
    name: "Public"
    network_name: "Public"
    cidr: "192.0.2.0/24"
    gateway_ip: "192.0.2.1"
    availability_zone: "uk-1a"
    state: present
    k5_auth: "{{ k5_auth_reg.k5_auth_facts }}"
- name: "Create Router"
  k5_create_router:
    name: "Public"
    availability_zone: "uk-1a"
    state: present
    k5_auth: "{{ k5_auth_reg.k5_auth_facts }}"
- name: "Attach private network to router"
  os_router:
    name: "Public"
    state: present
    network: "inf_az1_ext-net02"
    interfaces: "Public"
    cloud: root
- name: "Create Servers"
  os_server:
    name: "Server"
    availability_zone: "uk-1a"
    flavor: "P-1"
    state: present
    key_name: "MyFirstKey"
    network: "Public-Network"
    image: "Ubuntu Server 14.04 LTS (English) 02"
    boot_from_volume: yes
    terminate_volume: yes
    security_groups: "Default"
    auto_ip: no
    timeout: 7200
    cloud: root