"The Guitar Template" by "Neil Williamson" on Flickr

Testing (and failing inline) for data types in Ansible

I tend to write long and overly complicated set_fact statements in Ansible, ALL THE DAMN TIME. I write stuff like this:

rulebase: |
    {% for var in vars | dict2items %}
      {% if var.key | regex_search(regex_rulebase_match) | type_debug != "NoneType"
        and (
          var.value | type_debug == "dict" 
          or var.value | type_debug == "AnsibleMapping"
        ) %}
        {% for item in var.value | dict2items %}
          {% if item.key | regex_search(regex_rulebase_match) | type_debug != "NoneType"
            and (
              item.value | type_debug == "dict" 
              or item.value | type_debug == "AnsibleMapping"
            ) %}
            "{{ var.key | regex_replace(regex_rulebase_match, '\2') }}{{ item.key | regex_replace(regex_rulebase_match, '\2') }}": {
              {# This block is used for rulegroup level options #}
              {% for key in ['log_from_start', 'log', 'status', 'nat', 'natpool', 'schedule', 'ips_enable', 'ssl_ssh_profile', 'ips_sensor'] %}
                {% if var.value[key] is defined and rule.value[key] is not defined %}
                  {% if var.value[key] | type_debug in ['string', 'AnsibleUnicode'] %}
                    "{{ key }}": "{{ var.value[key] }}",
                  {% else %}
                    "{{ key }}": {{ var.value[key] }},
                  {% endif %}
                {% endif %}
              {% endfor %}
              {% for rule in item.value | dict2items %}
                {% if rule.key in ['sources', 'destinations', 'services', 'src_internet_service', 'dst_internet_service'] and rule.value | type_debug not in ['list', 'AnsibleSequence'] %}
                  "{{ rule.key }}": ["{{ rule.value }}"],
                {% elif rule.value | type_debug in ['string', 'AnsibleUnicode'] %}
                  "{{ rule.key }}": "{{ rule.value }}",
                {% else %}
                  "{{ rule.key }}": {{ rule.value }},
                {% endif %}
              {% endfor %}
          {% endif %}
        {% endfor %}
      {% endif %}
    {% endfor %}

Now, if you’re writing set_fact or vars like this a lot, what you tend to end up with is the dreaded dict2items requires a dictionary, got instead. which basically means “Hah! You wrote a giant blob of what you thought was JSON, but didn’t render right, so we cast it to a string for you!”

The way I usually write my playbooks, I’ll do something with this set_fact at line, let’s say, 10, and then use it at line, let’s say, 500… So, I don’t know what the bloomin’ thing looks like then!

So, how to get around that? Well, you could do a type check. In fact, I wrote a bloomin’ big blog post explaining just how to do that!

However, that gets unwieldy really quickly, and what I actually wanted to do was to throw the breaks on as soon as I’d created an invalid data type. So, to do that, I created a collection of functions which helped me with my current project, and they look a bit like this one, called “is_a_string.yml“:

- name: Type Check - is_a_string
    quiet: yes
    - vars[this_key] is not boolean
    - vars[this_key] is not number
    - vars[this_key] | int | string != vars[this_key] | string
    - vars[this_key] | float | string != vars[this_key] | string
    - vars[this_key] is string
    - vars[this_key] is not mapping
    - vars[this_key] is iterable
    success_msg: "{{ this_key }} is a string"
    fail_msg: |-
      {{ this_key }} should be a string, and is instead
      {%- if vars[this_key] is not defined %} undefined
      {%- else %} {{ vars[this_key] is boolean | ternary(
        'a boolean',
        (vars[this_key] | int | string == vars[this_key] | string) | ternary(
          'an integer',
          (vars[this_key] | float | string == vars[this_key] | string) | ternary(
            'a float',
            vars[this_key] is string | ternary(
              'a string',
              vars[this_key] is mapping | ternary(
                'a dict',
                vars[this_key] is iterable | ternary(
                  'a list',
                  'unknown (' ~ vars[this_key] | type_debug ~ ')'
      )}}{% endif %} - {{ vars[this_key] | default('unset') }}

To trigger this, I do the following:

- hosts: localhost
  gather_facts: false
    SomeString: abc123
    SomeDict: {'somekey': 'somevalue'}
    SomeList: ['somevalue']
    SomeInteger: 12
    SomeFloat: 12.0
    SomeBoolean: false
  - name: Type Check - SomeString
      this_key: SomeString
    include_tasks: tasks/type_check/is_a_string.yml
  - name: Type Check - SomeDict
      this_key: SomeDict
    include_tasks: tasks/type_check/is_a_dict.yml
  - name: Type Check - SomeList
      this_key: SomeList
    include_tasks: tasks/type_check/is_a_list.yml
  - name: Type Check - SomeInteger
      this_key: SomeInteger
    include_tasks: tasks/type_check/is_an_integer.yml
  - name: Type Check - SomeFloat
      this_key: SomeFloat
    include_tasks: tasks/type_check/is_a_float.yml
  - name: Type Check - SomeBoolean
      this_key: SomeBoolean
    include_tasks: tasks/type_check/is_a_boolean.yml

I hope this helps you, bold traveller with complex jinja2 templating requirements!

(Oh, and if you get “template error while templating string: no test named 'boolean'“, you’re probably running Ansible which you installed using apt from Ubuntu Universe, version 2.9.6+dfsg-1 [or, at least I was!] – to fix this, use pip to install a more recent version – preferably using virtualenv first!)

Featured image is “The Guitar Template” by “Neil Williamson” on Flickr and is released under a CC-BY-SA license.

'Geocache "Goodies"' by 'sk' on Flickr

Caching online data sources in Ansible for later development or testing

My current Ansible project relies on me collecting a lot of data from AWS and then checking it again later, to see if something has changed.

This is great for one-off tests (e.g. terraform destroy ; terraform apply ; ansible-playbook run.yml) but isn’t great for repetitive tests, especially if you have to collect data that may take many minutes to run all the actions, or if you have slow or unreliable internet in your development environment.

To get around this, I wrote a wrapper for caching this data.

At the top of my playbook, run.yml, I have these tasks:

- name: Set Online Status.
  # This stores the value of run_online, unless run_online
  # is not set, in which case, it defines it as "true".
    run_online: |-
      {{- run_online | default(true) | bool -}}

- name: Create cache_data path.
  # This creates a "cached_data" directory in the same
  # path as the playbook.
  when: run_online | bool and cache_data | default(false) | bool
  delegate_to: localhost
  run_once: true
    path: "cached_data"
    state: directory
    mode: 0755

- name: Create cache_data for host.
  # This creates a directory under "cached_data" in the same
  # path as the playbook, with the name of each of the inventory
  # items.
  when: run_online | bool and cache_data | default(false) | bool
  delegate_to: localhost
    path: "cached_data/{{ inventory_hostname }}"
    state: directory
    mode: 0755

Running this sets up an expectation for the normal operation of the playbook, that it will be “online”, by default.

Then, every time I need to call something “online”, for example, collect EC2 Instance Data (using the community.aws.ec2_instance_info module), I call out to (something like) this set of tasks, instead of just calling the task by itself.

- name: List all EC2 instances in the regions of interest.
  when: run_online | bool
    region: "{{ item.region_name }}"
  loop: "{{ regions }}"
    label: "{{ item.region_name }}"
  register: regional_ec2

- name: "NOTE: Set regional_ec2 data path"
  when: not run_online | bool or cache_data | default(false) | bool
    regional_ec2_cached_data_file_loop: "{{ regional_ec2_cached_data_file_loop | default(0) | int + 1 }}"
    cached_data_filename: "cached_data/{{ inventory_hostname }}/{{ cached_data_file | default('regional_ec2') }}.{{ regional_ec2_cached_data_file_loop | default(0) | int + 1 }}.json"

- name: "NOTE: Cache/Get regional_ec2 data path"
  when: not run_online | bool or cache_data | default(false) | bool
    msg: "File: {{ cached_data_filename }}"

- name: Cache all EC2 instances in the regions of interest.
  when: run_online | bool and cache_data | default(false) | bool
  delegate_to: localhost
    dest: "{{ cached_data_filename }}"
    mode: "0644"
    content: "{{ regional_ec2 }}"

- name: "OFFLINE: Load all EC2 instances in the regions of interest."
  when: not run_online | bool
    regional_ec2: "{% include( cached_data_filename ) %}"

The first task, if it’s still set to being “online” will execute the task, and registers the result for later. If cache_data is configured, we generate a filename for the caching, record the filename to the log (via the debug task) and then store it (using the copy task). So far, so online… but what happens when we don’t need the instance to be up and running?

In that case, we use the set_fact module, triggered by running the playbook like this: ansible-playbook run.yml -e run_online=false. This reads the cached data out of that locally stored pool of data for later use.

Featured image is ‘Geocache “Goodies”‘ by ‘sk‘ on Flickr and is released under a CC-BY-ND license.

"Main console" by "Steve Parker" on Flickr

Running services (like SSH, nginx, etc) on Windows Subsystem for Linux (WSL1) on boot

I recently got a new laptop, and for various reasons, I’m going to be primarily running Windows on that laptop. However, I still like having a working SSH server, running in the context of my Windows Subsystem for Linux (WSL) environment.

Initially, trying to run service ssh start failed with an error, because you need to re-execute the ssh configuration steps which are missed in a WSL environment. To fix that, run sudo apt install --reinstall openssh-server.

Once you know your service runs OK, you start digging around to find out how to start it on boot, and you’ll see lots of people saying things like “Just run a shell script that starts your first service, and then another shell script for the next service.”

Well, the frustration for me is that Linux already has this capability – the current popular version is called SystemD, but a slightly older variant is still knocking around in modern linux distributions, and it’s called SystemV Init, often referred to as just “sysv” or “init.d”.

The way that those services work is that you have an “init” file in /etc/init.d and then those files have a symbolic link into a “runlevel” directory, for example /etc/rc3.d. Each symbolic link is named S##service or K##service, where the ## represents the order in which it’s to be launched. The SSH Daemon, for example, that I want to run is created in there as /etc/rc3.d/S01ssh.

So, how do I make this work in the grander scheme of WSL? I can’t use SystemD, where I could say systemctl enable --now ssh, instead I need to add a (yes, I know) shell script, which looks in my desired runlevel directory. Runlevel 3 is the level at which network services have started, hence using that one. If I was trying to set up a graphical desktop, I’d instead be looking to use Runlevel 5, but the X Windows system isn’t ported to Windows like that yet… Anyway.

Because the rc#.d directory already has this structure for ordering and naming services to load, I can just step over this directory looking for files which match or do not match the naming convention, and I do that with this script:

#! /bin/bash
function run_rc() {
  base="$(basename "$1")"
  if [[ ${base:0:1} == "S" ]]
    "$1" start
    "$1" stop

if [ "$1" != "" ] && [ -e "$1" ]
  run_rc "$1"
  if [ "$1" != "" ] && [ -e "/etc/rc${$1}.d/" ]
  for digit1 in {0..9}
    for digit2 in {0..9}
      find "/etc/rc${rc}.d/" -name "[SK]${digit1}${digit2}*" -exec "$0" '{}' \; 2>/dev/null

I’ve put this script in /opt/wsl_init.sh

This does a bit of trickery, but basically runs the bottom block first. It loops over the digits 0 to 9 twice (giving you 00, 01, 02 and so on up to 99) and looks in /etc/rc3.d for any file containing the filename starting S or K and then with the two digits you’ve looped to by that point. Finally, it runs itself again, passing the name of the file it just found, and this is where the top block comes in.

In the top block we look at the “basename” – the part of the path supplied, without any prefixed directories attached, and then extract just the first character (that’s the ${base:0:1} part) to see whether it’s an “S” or anything else. If it’s an S (which everything there is likely to be), it executes the task like this: /etc/rc3.d/S01ssh start and this works because it’s how that script is designed! You can run one of the following instances of this command: service ssh start, /etc/init.d/ssh start or /etc/rc3.d/S01ssh start. There are other options, notably “stop” or “status”, but these aren’t really useful here.

Now, how do we make Windows execute this on boot? I’m using NSSM, the “Non-sucking service manager” to add a line to the Windows System services. I placed the NSSM executable in C:\Program Files\nssm\nssm.exe, and then from a command line, ran C:\Program Files\nssm\nssm.exe install WSL_Init.

I configured it with the Application Path: C:\Windows\System32\wsl.exe and the Arguments: -d ubuntu -e sudo /opt/wsl_init.sh. Note that this only works because I’ve also got Sudo setup to execute this command without prompting for a password.

Here I invoke C:\Windows\System32\wsl.exe -d ubuntu -e sudo /opt/wsl_init.sh
I define the name of the service, as Services will see it, and also the description of the service.
I put in MY username and My Windows Password here, otherwise I’m not running WSL in my user context, but another one.

And then I rebooted. SSH was running as I needed it.

Featured image is “Main console” by “Steve Parker” on Flickr and is released under a CC-BY license.

"pharmacy" by "Tim Evanson" on Flickr

AWX – The Gateway Drug to Ansible Tower

A love letter to Ansible Tower

I love Ansible… I mean, I really love Ansible. You can ask anyone, and they’ll tell you my first love is my wife, then my children… and then it’s Ansible.

OK, maybe it’s Open Source and then Ansible, but either way, Ansible is REALLY high up there.

But, while I love Ansible, I love what Ansible Tower brings to an environment. See, while you get to easily and quickly manage a fleet of machines with Ansible, Ansible Tower gives you the fine grained control over what you need to expose to your developers, your ops team, or even, in a fit of “what-did-you-just-do”-ness, your manager. (I should probably mention that Ansible Tower is actually part of a much larger portfolio of products, called Ansible Automation Platform, and there’s some hosted SaaS stuff that goes with it… but the bit I really want to talk about is Tower, so I’ll be talking about Tower and not Ansible Automation Platform. Sorry!)

Ansible Tower has a scheduling engine, so you can have a “Go” button, for deploying the latest software to your fleet, or just for the 11PM patching cycle. It has a credential store, so your teams can’t just quickly go and perform an undocumented quick fix on that “flaky” box – they need to do their changes via Ansible. And lastly, it has an inventory, so you can see that the last 5 jobs failed to deploy on that host, so maybe you’ve got a problem with it.

One thing that people don’t so much love to do, is to get a license to deploy Tower, particularly if they just want to quickly spin up a demonstration for some colleagues to show how much THEY love Ansible. And for those people, I present AWX.

The first hit is free

One of the glorious and beautiful things that RedHat did, when they bought Ansible, was to make the same assertion about the Ansible products that they make to the rest of their product line, which is… while they may sell a commercial product, underneath it will be an Open Source version of that product, and you can be part of developing and improving that version, to help improve the commercial product. Thus was released AWX.

Now, I hear the nay-sayers commenting, “but what if you have an issue with AWX at 2AM, how do you get support on that”… and to those people, I reply: “If you need support at 2AM for your box, AWX is not the tool for you – what you need is Tower.”… Um, I mean Ansible Automation Platform. However, Tower takes a bit more setting up than what I’d want to do for a quick demo, and it has a few more pre-requisites. ANYWAY, enough about dealing with the nay-sayers.

AWX is an application inside Docker containers. It’s split into three parts, the AWX Web container, which has the REST API. There’s also a PostgreSQL database inside there too, and one “Engine”, which is the separate container which gets playbooks from your version control system, asks for any dynamic inventories, and then runs those playbooks on your inventories.

I like running demos of Tower, using AWX, because it’s reasonably easy to get stood up, and it’s reasonably close to what Tower looks and behaves like (except for the logos)… and, well, it’s a good gateway to getting people interested in what Tower can do for them, without them having to pay (or spend time signing up for evaluation licenses) for the environment in the first place.

And what’s more, it can all be automated

Yes, folks, because AWX is just a set of docker containers (and an install script), and Ansible knows how to start Docker containers (and run an install script), I can add an Ansible playbook to my cloud-init script, Vagrantfile or, let’s face it, when things go really wrong, put it in a bash script for some poor keyboard jockey to install for you.

If you’re running a demo, and you don’t want to get a POC (proof of concept) or evaluation license for Ansible Tower, then the chances are you’re probably not running this on RedHat Enterprise Linux (RHEL) either. That’s OK, once you’ve sold the room on using Tower (by using AWX), you can sell them on using RHEL too. So, I’ll be focusing on using CentOS 8 instead. Partially because there’s a Vagrant box for CentOS 8, but also because I can also use CentOS 8 on AWS, where I can prove that the Ansible Script I’m putting into my Vagrantfile will also deploy nicely via Cloud-Init too. With a very small number of changes, this is likely to work on anything that runs Docker, so everything from Arch to Ubuntu… probably 😁

“OK then. How can you work this magic, eh?” I hear from the back of the room. OK, pipe down, nay-sayers.

First, install Ansible on your host. You just need to run dnf install -y ansible.

Next, you need to install Docker. This is a marked difference between AWX and Ansible Tower, as AWX is based on Docker, but Ansible Tower uses other magic to make it work. When you’re selling the benefits of Tower, note that it’s not a 1-for-1 match at this point, but it’s not a big issue. Fortunately, CentOS can install Docker Community edition quite easily. At this point, I’m swapping to using Ansible playbooks. At the end, I’ll drop a link to where you can get all this in one big blob… In fact, we’re likely to use it with our Cloud-Init deployment.

Aw yehr, here’s the good stuff

- name: Update all packages
    name: "*"
    state: latest

- name: Add dependency for "yum config-manager"
    name: yum-utils
    state: present

- name: Add the Docker Repo
  shell: yum config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
    creates: /etc/yum.repos.d/docker-ce.repo
    warn: false

- name: Install Docker
    - docker-ce
    - docker-ce-cli
    - containerd.io
    state: present
  notify: Start Docker

That first stanza – update all packages? Well, that’s because containerd.io relies on a newer version of libseccomp, which hasn’t been built in the CentOS 8 Vagrantbox I’m using.

The next one? That ensures I can run yum config-manager to add a repo. I could use the copy module in Ansible to create the repo files so yum and/or dnf could use that instead, but… meh, this is a single line shell command.

And then we install the repo, and the docker-ce packages we require. We use the “notify” statement to trigger a handler call to start Docker, like this:

- name: Start Docker
    name: docker
    state: started

Fab. We’ve got Docker. Now, let’s clone the AWX repo to our machine. Again, we’re doing this with Ansible, naturally :)

- name: Clone AWX repo to local path
    repo: https://github.com/ansible/awx.git
    dest: /opt/awx

- name: Get latest AWX tag
  shell: |
    if [ $(git status -s | wc -l) -gt 0 ]
      git stash >/dev/null 2>&1
    git fetch --tags && git describe --tags $(git rev-list --tags --max-count=1)
    if [ $(git stash list | wc -l) -gt 0 ]
      git stash pop >/dev/null 2>&1
    chdir: /opt/awx
  register: latest_tag
  changed_when: false

- name: Use latest released version of AWX
    repo: https://github.com/ansible/awx.git
    dest: /opt/awx
    version: "{{ latest_tag.stdout }}"

OK, there’s a fair bit to get from this, but essentially, we clone the repo from Github, then ask (using a collection of git commands) for the latest released version (yes, I’ve been bitten by just using the head of “devel” before), and then we check out that released version.

Fab, now we can configure it.

- name: Set or Read admin password
    admin_password_was_generated: "{{ (admin_password is defined or lookup('env', 'admin_password') != '') | ternary(false, true) }}"
    admin_password: "{{ admin_password | default (lookup('env', 'admin_password') | default(lookup('password', 'pw.admin_password chars=ascii_letters,digits length=20'), true) ) }}"

- name: Configure AWX installer
    path: /opt/awx/installer/inventory
    regexp: "^#?{{ item.key }}="
    line: "{{ item.key }}={{ item.value }}"
  - key: "awx_web_hostname"
    value: "{{ ansible_fqdn }}"
  - key: "pg_password"
    value: "{{ lookup('password', 'pw.pg_password chars=ascii_letters,digits length=20') }}"
  - key: "rabbitmq_password"
    value: "{{ lookup('password', 'pw.rabbitmq_password chars=ascii_letters,digits length=20') }}"
  - key: "rabbitmq_erlang_cookie"
    value: "{{ lookup('password', 'pw.rabbitmq_erlang_cookie chars=ascii_letters,digits length=20') }}"
  - key: "admin_password"
    value: "{{ admin_password }}"
  - key: "secret_key"
    value: "{{ lookup('password', 'pw.secret_key chars=ascii_letters,digits length=64') }}"
  - key: "create_preload_data"
    value: "False"
    label: "{{ item.key }}"

If we don’t already have a password defined, then create one. We register the fact we’ve had to create one, as we’ll need to tell ourselves it once the build is finished.

After that, we set a collection of values into the installer – the hostname, passwords, secret keys and so on. It loops over a key/value pair, and passes these to a regular expression rewrite command, so at the end, we have the settings we want, without having to change this script between releases.

When this is all done, we execute the installer. I’ve seen this done two ways. In an ideal world, you’d throw this into an Ansible shell module, and get it to execute the install, but the problem with that is that the AWX install takes quite a while, so I’d much rather actually be able to see what’s going on… and so, instead, we exit our prepare script at this point, and drop back to the shell to run the installer. Let’s look at both options, and you can decide which one you want to do. In my script, I’m doing the first, but just because it’s a bit neater to have everything in one place.

- name: Run the AWX install.
  shell: ansible-playbook -i inventory install.yml
    chdir: /opt/awx/installer
cd /opt/awx/installer
ansible-playbook -i inventory install.yml

When this is done, you get a prepared environment, ready to access using the username admin and the password of … well, whatever you set admin_password to.

AWX takes a little while to stand up, so you might want to run this next Ansible stanza to see when it’s ready to go.

- name: Test access to AWX
    tower_host: "http://{{ ansible_fqdn }}"
    tower_username: admin
    tower_password: "{{ admin_password }}"
    email: "admin@{{ ansible_fqdn }}"
    first_name: "admin"
    last_name: ""
    password: "{{ admin_password }}"
    username: admin
    superuser: yes
    auditor: no
  register: _result
  until: _result.failed == false
  retries: 240 # retry 240 times
  delay: 5 # pause for 5 sec between each try

The upshot to using that command there is that it sets the email address of the admin account to “admin@your.awx.example.org“, if the fully qualified domain name (FQDN) of your machine is your.awx.example.org.

Moving from the Theoretical to the Practical

Now we’ve got our playbook, let’s wrap this up in both a Vagrant Vagrantfile and a Terraform script, this means you can deploy it locally, to test something internally, and in “the cloud”.

To simplify things, and because the version of Ansible deployed on the Vagrant box isn’t the one I want to use, I am using a single “user-data.sh” script for both Vagrant and Terraform. Here that is:

if [ -e "$(which yum)" ]
  yum install git python3-pip -y
  pip3 install ansible docker docker-compose
  echo "This script only supports CentOS right now."
  exit 1

git clone https://gist.github.com/JonTheNiceGuy/024d72f970d6a1c6160a6e9c3e642e07 /tmp/Install_AWX
cd /tmp/Install_AWX
/usr/local/bin/ansible-playbook Install_AWX.yml

While they both have their differences, they both can execute a script once the machine has finished booting. Let’s start with Vagrant.

Vagrant.configure("2") do |config|
  config.vm.box = "centos/8"

  config.vm.provider :virtualbox do |v|
    v.memory = 4096

  config.vm.provision "shell", path: "user-data.sh"

  config.vm.network "forwarded_port", guest: 80, host: 8080, auto_correct: true

To boot this up, once you’ve got Vagrant and Virtualbox installed, run vagrant up and it’ll tell you that it’s set up a port forward from the HTTP port (TCP/80) to a “high” port – TCP/8080. If there’s a collision (because you’re running something else on TCP/8080), it’ll tell you what port it’s forwarded the HTTP port to instead. Once you’ve finished, run vagrant destroy to shut it down. There are lots more tricks you can play with Vagrant, but this is a relatively quick and easy one. Be aware that you’re not using HTTPS, so traffic to the AWX instance can be inspected, but if you’re running this on your local machine, it’s probably not a big issue.

How about running this on a cloud provider, like AWS? We can use the exact same scripts – both the Ansible script, and the user-data.sh script, using Terraform, however, this is a little more complex, as we need to create a VPC, Internet Gateway, Subnet, Security Group and Elastic IP before we can create the virtual machine. What’s more, the Free Tier (that “first hit is free” thing that Amazon Web Services provide to you) does not have enough horsepower to run AWX, so, if you want to look at how to run up AWX in EC2 (or to tweak it to run on Azure, GCP, Digital Ocean or one of the fine offerings from IBM or RedHat), then click through to the gist I’ve put all my code from this post into. The critical lines in there are to select a “CentOS 8” image, open HTTP and SSH into the machine, and to specify the user-data.sh file to provision the machine. Everything else is cruft to make the virtual machine talk to, and be seen by, hosts on the Internet.

To run this one, you need to run terraform init to load the AWS plugin, then terraform apply. Note that this relies on having an AWS access token defined, so if you don’t have them set up, you’ll need to get that sorted out first. Once you’ve finished with your demo, you should run terraform destroy to remove all the assets created by this terraform script. Again, when you’re running that demo, note that you ONLY have HTTP access set up, not HTTPS, so don’t use important credentials on there!

Once you’ve got your AWX environment running, you’ve got just enough AWX there to demo what Ansible Tower looks like, what it can bring to your organisation… and maybe even convince them that it’s worth investing in a license, rather than running AWX in production. Just in case you have that 2AM call-out that we all dread.

Featured image is “pharmacy” by “Tim Evanson” on Flickr and is released under a CC-BY-SA license.

"#security #lockpick" by "John Jones" on Flickr

Auto-starting an SSH Agent in Windows Subsystem for Linux

I tend to use Windows Subsystem for Linux (WSL) as a comprehensive SSH client, mostly for running things like Ansible scripts and Terraform. One of the issues I’ve had with it though is that, on a Linux GUI based system, I would start my SSH Agent on login, and then the first time I used an SSH key, I would unlock the key using the agent, and it would be cached for the duration of my logged in session.

While I was looking for something last night, I came across this solution on Stack Overflow (which in turn links to this blog post, which in turn links to this mailing list post) that suggests adding the following stanza to ~/.profile in WSL. I’m running the WSL version of Ubuntu 20.04, but the same principles apply on Cygwin, or, probably, any headless-server installation of a Linux distribution, if that’s your thing.

function start_agent {
    echo "Initialising new SSH agent..."
    /usr/bin/ssh-agent | sed 's/^echo/#echo/' > "${SSH_ENV}"
    echo succeeded
    chmod 600 "${SSH_ENV}"
    . "${SSH_ENV}" > /dev/null
# Source SSH settings, if applicable
if [ -f "${SSH_ENV}" ]; then
    . "${SSH_ENV}" > /dev/null
    ps -ef | grep ${SSH_AGENT_PID} | grep ssh-agent$ > /dev/null || {

Now, this part is all well-and-good, but what about that part where you want to SSH using a key, and then that being unlocked for the duration of your SSH Agent being available?

To get around that, in the same solution page, there is a suggestion of adding this line to your .ssh/config: AddKeysToAgent yes. I’ve previously suggested using dynamically included SSH configuration files, so in this case, I’d look for your file which contains your “wildcard” stanza (if you have one), and add the line there. This is what mine looks like:

Host *
  AddKeysToAgent yes
  IdentityFile ~/.ssh/MyCurrentKey

How does this help you? Well, if you’re using jump hosts (using ProxyJump MyBastionHost, for example) you’ll only be prompted for your SSH Key once, or if you typically do a lot of SSH sessions, you’ll only need to unlock your session once.

BUT, and I can’t really stress this enough, don’t use this on a shared or suspected compromised system! If you’ve got a root account which can access the content of your Agent’s Socket and PID, then any protections that private key may have held for your system is compromised.

Featured image is “#security #lockpick” by “John Jones” on Flickr and is released under a CC-BY-ND license.

A screenshot of the Wordpress site, showing updates available

wp-upgrade.sh – A simple tool to update and upgrade WordPress components via cron

A simple tool to update and upgrade WordPress components

A few years ago, I hosted my blog on Dreamhost. They’ve customized something inside the blog which means it doesn’t automatically update itself. I’ve long since moved this blog off to my own hosting, but I can’t figure out which thing it was they changed, and I’ve got so much content and stuff in here, I don’t really want to mess with it.

Anyway, I like keeping my systems up to date, and I hate logging into a blog and finding updates are pending, so I wrote this script. It uses wp-cli which I have installed to /usr/local/bin/wp as per the install guide. This is also useful if you’re hosting your site in such a way that you can’t make changes to core or plugins from the web interface.

This script updates:

  1. All core files (lines core update-db, core update and language core update)
  2. All plugins (lines plugin update --all and language plugin update --all)
  3. All themes (lines theme update --all and language theme update --all)

To remove any part of this script, just delete those lines, including the /usr/local/bin/wp and --quiet && \ fragments!

I then run sudo -u www-data crontab -e (replacing www-data with the real account name of the user who controls the blog, which can be found by doing an ls -l /var/www/html/ replacing the path to where your blog is located) and I add the bottom line to that crontab file (the rest is just comments to remind you what the fields are!)

#                                         day of month [1-31]
#                                             month [1-12]
#                                                 day of week [1-6 Mon-Sat, 0/7 Sun]
# minute   hour                                         command
1          1,3,5,7,9,11,13,15,17,19,21,23 *   *   *     /usr/local/bin/wp-upgrade.sh /var/www/jon.sprig.gs/blog

This means that every other hour, at 1 minute past the hour, every day, every month, I run the update :)

If you’ve got email setup for this host and user, you’ll get an email whenever it upgrades a component too.

"Monitors" by "Jaysin Trevino" on Flickr

Using monit to monitor Docker Containers

As I only run a few machines with services that matter on them (notably, my home server and my web server), I don’t need a full-on monitoring service, so instead rely on a system called monit.

Monit is an open source piece of software, used to monitor (see, it’s easily named 😄) and, if possible remediate issues with things it sees wrong.

I use this for watching whether particular services are running (and if not, restart them), for whether the ink in my printer is empty, and to monitor the free space and SMART status on my disks.

Today I noticed that a Docker container had stopped, and I’d not noticed. It wasn’t a big thing, but it gnawed at me, so I had a bit of a look around to see what I can find about this.

I found this blog post, titled “Monitoring Docker Containers with Monit”, from 2014, which suggested monitoring the result from docker top… and would you believe it, that’s a valid trick 🙂

So, here’s what I’m doing! Each container has it’s own file called/etc/monit/scripts/check_container_<container-name>.sh which has just this command in it:

#! /bin/bash
docker top "<container-name>"
exit $?

Note that you replace <container-name> in both the filename and the script itself with the name of the container – for example, the container hello-world would be monitored with the file check_container_hello-world.sh, and the line in that file would say docker top "hello-world".

I then have a file in /etc/monit/conf.d/ called check_container_<container-name> which has this content

CHECK PROGRAM <container-name> WITH PATH /etc/monit/scripts/check_container_<container-name>.sh
  START PROGRAM = "/usr/bin/docker start <container-name>"
  STOP PROGRAM = "/usr/bin/docker stop <container-name>"

I then ensure that in /etc/monit/monitrc the line “include /etc/monit/conf.d/*” is included and not commented out, and then restart monit with systemctl restart monit.

Featured image is “Monitors” by “Jaysin Trevino” on Flickr and is released under a CC-BY license.

Opening to my video: Screencast 003 - Gitlab

Screencast 003: Gitlab

I’ve done a new mentoring style video, talking about how to use a self-hosted version of Gitlab for basic group projects and individual projects.

Screencast 003: Gitlab

Also available on Archive.org and LBRY.

Late edit 2020-03-25: To build the Gitlab environment I created, take a look at this git repository, which uses Terraform, some cloud init scripts and an ansible playbook. In particular, look at the following files:

If you just want to build the Gitlab environment, then it’s worth removing or renaming (to anything that isn’t .tf – I use .tf_unload) the files load_aws_module.tf, load_awx_module.tf, load_azure_module.tf