"The Guitar Template" by "Neil Williamson" on Flickr

Testing (and failing inline) for data types in Ansible

I tend to write long and overly complicated set_fact statements in Ansible, ALL THE DAMN TIME. I write stuff like this:

rulebase: |
  {
    {% for var in vars | dict2items %}
      {% if var.key | regex_search(regex_rulebase_match) | type_debug != "NoneType"
        and (
          var.value | type_debug == "dict" 
          or var.value | type_debug == "AnsibleMapping"
        ) %}
        {% for item in var.value | dict2items %}
          {% if item.key | regex_search(regex_rulebase_match) | type_debug != "NoneType"
            and (
              item.value | type_debug == "dict" 
              or item.value | type_debug == "AnsibleMapping"
            ) %}
            "{{ var.key | regex_replace(regex_rulebase_match, '\2') }}{{ item.key | regex_replace(regex_rulebase_match, '\2') }}": {
              {# This block is used for rulegroup level options #}
              {% for key in ['log_from_start', 'log', 'status', 'nat', 'natpool', 'schedule', 'ips_enable', 'ssl_ssh_profile', 'ips_sensor'] %}
                {% if var.value[key] is defined and rule.value[key] is not defined %}
                  {% if var.value[key] | type_debug in ['string', 'AnsibleUnicode'] %}
                    "{{ key }}": "{{ var.value[key] }}",
                  {% else %}
                    "{{ key }}": {{ var.value[key] }},
                  {% endif %}
                {% endif %}
              {% endfor %}
              {% for rule in item.value | dict2items %}
                {% if rule.key in ['sources', 'destinations', 'services', 'src_internet_service', 'dst_internet_service'] and rule.value | type_debug not in ['list', 'AnsibleSequence'] %}
                  "{{ rule.key }}": ["{{ rule.value }}"],
                {% elif rule.value | type_debug in ['string', 'AnsibleUnicode'] %}
                  "{{ rule.key }}": "{{ rule.value }}",
                {% else %}
                  "{{ rule.key }}": {{ rule.value }},
                {% endif %}
              {% endfor %}
            },
          {% endif %}
        {% endfor %}
      {% endif %}
    {% endfor %}
  }

Now, if you’re writing set_fact or vars like this a lot, what you tend to end up with is the dreaded dict2items requires a dictionary, got instead. which basically means “Hah! You wrote a giant blob of what you thought was JSON, but didn’t render right, so we cast it to a string for you!”

The way I usually write my playbooks, I’ll do something with this set_fact at line, let’s say, 10, and then use it at line, let’s say, 500… So, I don’t know what the bloomin’ thing looks like then!

So, how to get around that? Well, you could do a type check. In fact, I wrote a bloomin’ big blog post explaining just how to do that!

However, that gets unwieldy really quickly, and what I actually wanted to do was to throw the breaks on as soon as I’d created an invalid data type. So, to do that, I created a collection of functions which helped me with my current project, and they look a bit like this one, called “is_a_string.yml“:

- name: Type Check - is_a_string
  assert:
    quiet: yes
    that:
    - vars[this_key] is not boolean
    - vars[this_key] is not number
    - vars[this_key] | int | string != vars[this_key] | string
    - vars[this_key] | float | string != vars[this_key] | string
    - vars[this_key] is string
    - vars[this_key] is not mapping
    - vars[this_key] is iterable
    success_msg: "{{ this_key }} is a string"
    fail_msg: |-
      {{ this_key }} should be a string, and is instead
      {%- if vars[this_key] is not defined %} undefined
      {%- else %} {{ vars[this_key] is boolean | ternary(
        'a boolean',
        (vars[this_key] | int | string == vars[this_key] | string) | ternary(
          'an integer',
          (vars[this_key] | float | string == vars[this_key] | string) | ternary(
            'a float',
            vars[this_key] is string | ternary(
              'a string',
              vars[this_key] is mapping | ternary(
                'a dict',
                vars[this_key] is iterable | ternary(
                  'a list',
                  'unknown (' ~ vars[this_key] | type_debug ~ ')'
                )
              )
            )
          )
        )
      )}}{% endif %} - {{ vars[this_key] | default('unset') }}

To trigger this, I do the following:

- hosts: localhost
  gather_facts: false
  vars:
    SomeString: abc123
    SomeDict: {'somekey': 'somevalue'}
    SomeList: ['somevalue']
    SomeInteger: 12
    SomeFloat: 12.0
    SomeBoolean: false
  tasks:
  - name: Type Check - SomeString
    vars:
      this_key: SomeString
    include_tasks: tasks/type_check/is_a_string.yml
  - name: Type Check - SomeDict
    vars:
      this_key: SomeDict
    include_tasks: tasks/type_check/is_a_dict.yml
  - name: Type Check - SomeList
    vars:
      this_key: SomeList
    include_tasks: tasks/type_check/is_a_list.yml
  - name: Type Check - SomeInteger
    vars:
      this_key: SomeInteger
    include_tasks: tasks/type_check/is_an_integer.yml
  - name: Type Check - SomeFloat
    vars:
      this_key: SomeFloat
    include_tasks: tasks/type_check/is_a_float.yml
  - name: Type Check - SomeBoolean
    vars:
      this_key: SomeBoolean
    include_tasks: tasks/type_check/is_a_boolean.yml

I hope this helps you, bold traveller with complex jinja2 templating requirements!

(Oh, and if you get “template error while templating string: no test named 'boolean'“, you’re probably running Ansible which you installed using apt from Ubuntu Universe, version 2.9.6+dfsg-1 [or, at least I was!] – to fix this, use pip to install a more recent version – preferably using virtualenv first!)

Featured image is “The Guitar Template” by “Neil Williamson” on Flickr and is released under a CC-BY-SA license.

"Main console" by "Steve Parker" on Flickr

Running services (like SSH, nginx, etc) on Windows Subsystem for Linux (WSL1) on boot

I recently got a new laptop, and for various reasons, I’m going to be primarily running Windows on that laptop. However, I still like having a working SSH server, running in the context of my Windows Subsystem for Linux (WSL) environment.

Initially, trying to run service ssh start failed with an error, because you need to re-execute the ssh configuration steps which are missed in a WSL environment. To fix that, run sudo apt install --reinstall openssh-server.

Once you know your service runs OK, you start digging around to find out how to start it on boot, and you’ll see lots of people saying things like “Just run a shell script that starts your first service, and then another shell script for the next service.”

Well, the frustration for me is that Linux already has this capability – the current popular version is called SystemD, but a slightly older variant is still knocking around in modern linux distributions, and it’s called SystemV Init, often referred to as just “sysv” or “init.d”.

The way that those services work is that you have an “init” file in /etc/init.d and then those files have a symbolic link into a “runlevel” directory, for example /etc/rc3.d. Each symbolic link is named S##service or K##service, where the ## represents the order in which it’s to be launched. The SSH Daemon, for example, that I want to run is created in there as /etc/rc3.d/S01ssh.

So, how do I make this work in the grander scheme of WSL? I can’t use SystemD, where I could say systemctl enable --now ssh, instead I need to add a (yes, I know) shell script, which looks in my desired runlevel directory. Runlevel 3 is the level at which network services have started, hence using that one. If I was trying to set up a graphical desktop, I’d instead be looking to use Runlevel 5, but the X Windows system isn’t ported to Windows like that yet… Anyway.

Because the rc#.d directory already has this structure for ordering and naming services to load, I can just step over this directory looking for files which match or do not match the naming convention, and I do that with this script:

#! /bin/bash
function run_rc() {
  base="$(basename "$1")"
  if [[ ${base:0:1} == "S" ]]
  then
    "$1" start
  else
    "$1" stop
  fi
}

if [ "$1" != "" ] && [ -e "$1" ]
then
  run_rc "$1"
else
  rc=3
  if [ "$1" != "" ] && [ -e "/etc/rc${$1}.d/" ]
  then
    rc="$1"
  fi
  for digit1 in {0..9}
  do
    for digit2 in {0..9}
    do
      find "/etc/rc${rc}.d/" -name "[SK]${digit1}${digit2}*" -exec "$0" '{}' \; 2>/dev/null
    done
  done
fi

I’ve put this script in /opt/wsl_init.sh

This does a bit of trickery, but basically runs the bottom block first. It loops over the digits 0 to 9 twice (giving you 00, 01, 02 and so on up to 99) and looks in /etc/rc3.d for any file containing the filename starting S or K and then with the two digits you’ve looped to by that point. Finally, it runs itself again, passing the name of the file it just found, and this is where the top block comes in.

In the top block we look at the “basename” – the part of the path supplied, without any prefixed directories attached, and then extract just the first character (that’s the ${base:0:1} part) to see whether it’s an “S” or anything else. If it’s an S (which everything there is likely to be), it executes the task like this: /etc/rc3.d/S01ssh start and this works because it’s how that script is designed! You can run one of the following instances of this command: service ssh start, /etc/init.d/ssh start or /etc/rc3.d/S01ssh start. There are other options, notably “stop” or “status”, but these aren’t really useful here.

Now, how do we make Windows execute this on boot? I’m using NSSM, the “Non-sucking service manager” to add a line to the Windows System services. I placed the NSSM executable in C:\Program Files\nssm\nssm.exe, and then from a command line, ran C:\Program Files\nssm\nssm.exe install WSL_Init.

I configured it with the Application Path: C:\Windows\System32\wsl.exe and the Arguments: -d ubuntu -e sudo /opt/wsl_init.sh. Note that this only works because I’ve also got Sudo setup to execute this command without prompting for a password.

Here I invoke C:\Windows\System32\wsl.exe -d ubuntu -e sudo /opt/wsl_init.sh
I define the name of the service, as Services will see it, and also the description of the service.
I put in MY username and My Windows Password here, otherwise I’m not running WSL in my user context, but another one.

And then I rebooted. SSH was running as I needed it.

Featured image is “Main console” by “Steve Parker” on Flickr and is released under a CC-BY license.

"pharmacy" by "Tim Evanson" on Flickr

AWX – The Gateway Drug to Ansible Tower

A love letter to Ansible Tower

I love Ansible… I mean, I really love Ansible. You can ask anyone, and they’ll tell you my first love is my wife, then my children… and then it’s Ansible.

OK, maybe it’s Open Source and then Ansible, but either way, Ansible is REALLY high up there.

But, while I love Ansible, I love what Ansible Tower brings to an environment. See, while you get to easily and quickly manage a fleet of machines with Ansible, Ansible Tower gives you the fine grained control over what you need to expose to your developers, your ops team, or even, in a fit of “what-did-you-just-do”-ness, your manager. (I should probably mention that Ansible Tower is actually part of a much larger portfolio of products, called Ansible Automation Platform, and there’s some hosted SaaS stuff that goes with it… but the bit I really want to talk about is Tower, so I’ll be talking about Tower and not Ansible Automation Platform. Sorry!)

Ansible Tower has a scheduling engine, so you can have a “Go” button, for deploying the latest software to your fleet, or just for the 11PM patching cycle. It has a credential store, so your teams can’t just quickly go and perform an undocumented quick fix on that “flaky” box – they need to do their changes via Ansible. And lastly, it has an inventory, so you can see that the last 5 jobs failed to deploy on that host, so maybe you’ve got a problem with it.

One thing that people don’t so much love to do, is to get a license to deploy Tower, particularly if they just want to quickly spin up a demonstration for some colleagues to show how much THEY love Ansible. And for those people, I present AWX.

The first hit is free

One of the glorious and beautiful things that RedHat did, when they bought Ansible, was to make the same assertion about the Ansible products that they make to the rest of their product line, which is… while they may sell a commercial product, underneath it will be an Open Source version of that product, and you can be part of developing and improving that version, to help improve the commercial product. Thus was released AWX.

Now, I hear the nay-sayers commenting, “but what if you have an issue with AWX at 2AM, how do you get support on that”… and to those people, I reply: “If you need support at 2AM for your box, AWX is not the tool for you – what you need is Tower.”… Um, I mean Ansible Automation Platform. However, Tower takes a bit more setting up than what I’d want to do for a quick demo, and it has a few more pre-requisites. ANYWAY, enough about dealing with the nay-sayers.

AWX is an application inside Docker containers. It’s split into three parts, the AWX Web container, which has the REST API. There’s also a PostgreSQL database inside there too, and one “Engine”, which is the separate container which gets playbooks from your version control system, asks for any dynamic inventories, and then runs those playbooks on your inventories.

I like running demos of Tower, using AWX, because it’s reasonably easy to get stood up, and it’s reasonably close to what Tower looks and behaves like (except for the logos)… and, well, it’s a good gateway to getting people interested in what Tower can do for them, without them having to pay (or spend time signing up for evaluation licenses) for the environment in the first place.

And what’s more, it can all be automated

Yes, folks, because AWX is just a set of docker containers (and an install script), and Ansible knows how to start Docker containers (and run an install script), I can add an Ansible playbook to my cloud-init script, Vagrantfile or, let’s face it, when things go really wrong, put it in a bash script for some poor keyboard jockey to install for you.

If you’re running a demo, and you don’t want to get a POC (proof of concept) or evaluation license for Ansible Tower, then the chances are you’re probably not running this on RedHat Enterprise Linux (RHEL) either. That’s OK, once you’ve sold the room on using Tower (by using AWX), you can sell them on using RHEL too. So, I’ll be focusing on using CentOS 8 instead. Partially because there’s a Vagrant box for CentOS 8, but also because I can also use CentOS 8 on AWS, where I can prove that the Ansible Script I’m putting into my Vagrantfile will also deploy nicely via Cloud-Init too. With a very small number of changes, this is likely to work on anything that runs Docker, so everything from Arch to Ubuntu… probably 😁

“OK then. How can you work this magic, eh?” I hear from the back of the room. OK, pipe down, nay-sayers.

First, install Ansible on your host. You just need to run dnf install -y ansible.

Next, you need to install Docker. This is a marked difference between AWX and Ansible Tower, as AWX is based on Docker, but Ansible Tower uses other magic to make it work. When you’re selling the benefits of Tower, note that it’s not a 1-for-1 match at this point, but it’s not a big issue. Fortunately, CentOS can install Docker Community edition quite easily. At this point, I’m swapping to using Ansible playbooks. At the end, I’ll drop a link to where you can get all this in one big blob… In fact, we’re likely to use it with our Cloud-Init deployment.

Aw yehr, here’s the good stuff

tasks:
- name: Update all packages
  dnf:
    name: "*"
    state: latest

- name: Add dependency for "yum config-manager"
  dnf:
    name: yum-utils
    state: present

- name: Add the Docker Repo
  shell: yum config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
  args:
    creates: /etc/yum.repos.d/docker-ce.repo
    warn: false

- name: Install Docker
  dnf:
    name:
    - docker-ce
    - docker-ce-cli
    - containerd.io
    state: present
  notify: Start Docker

That first stanza – update all packages? Well, that’s because containerd.io relies on a newer version of libseccomp, which hasn’t been built in the CentOS 8 Vagrantbox I’m using.

The next one? That ensures I can run yum config-manager to add a repo. I could use the copy module in Ansible to create the repo files so yum and/or dnf could use that instead, but… meh, this is a single line shell command.

And then we install the repo, and the docker-ce packages we require. We use the “notify” statement to trigger a handler call to start Docker, like this:

handlers:
- name: Start Docker
  systemd:
    name: docker
    state: started

Fab. We’ve got Docker. Now, let’s clone the AWX repo to our machine. Again, we’re doing this with Ansible, naturally :)

tasks:
- name: Clone AWX repo to local path
  git:
    repo: https://github.com/ansible/awx.git
    dest: /opt/awx

- name: Get latest AWX tag
  shell: |
    if [ $(git status -s | wc -l) -gt 0 ]
    then
      git stash >/dev/null 2>&1
    fi
    git fetch --tags && git describe --tags $(git rev-list --tags --max-count=1)
    if [ $(git stash list | wc -l) -gt 0 ]
    then
      git stash pop >/dev/null 2>&1
    fi
  args:
    chdir: /opt/awx
  register: latest_tag
  changed_when: false

- name: Use latest released version of AWX
  git:
    repo: https://github.com/ansible/awx.git
    dest: /opt/awx
    version: "{{ latest_tag.stdout }}"

OK, there’s a fair bit to get from this, but essentially, we clone the repo from Github, then ask (using a collection of git commands) for the latest released version (yes, I’ve been bitten by just using the head of “devel” before), and then we check out that released version.

Fab, now we can configure it.

tasks:
- name: Set or Read admin password
  set_fact:
    admin_password_was_generated: "{{ (admin_password is defined or lookup('env', 'admin_password') != '') | ternary(false, true) }}"
    admin_password: "{{ admin_password | default (lookup('env', 'admin_password') | default(lookup('password', 'pw.admin_password chars=ascii_letters,digits length=20'), true) ) }}"

- name: Configure AWX installer
  lineinfile:
    path: /opt/awx/installer/inventory
    regexp: "^#?{{ item.key }}="
    line: "{{ item.key }}={{ item.value }}"
  loop:
  - key: "awx_web_hostname"
    value: "{{ ansible_fqdn }}"
  - key: "pg_password"
    value: "{{ lookup('password', 'pw.pg_password chars=ascii_letters,digits length=20') }}"
  - key: "rabbitmq_password"
    value: "{{ lookup('password', 'pw.rabbitmq_password chars=ascii_letters,digits length=20') }}"
  - key: "rabbitmq_erlang_cookie"
    value: "{{ lookup('password', 'pw.rabbitmq_erlang_cookie chars=ascii_letters,digits length=20') }}"
  - key: "admin_password"
    value: "{{ admin_password }}"
  - key: "secret_key"
    value: "{{ lookup('password', 'pw.secret_key chars=ascii_letters,digits length=64') }}"
  - key: "create_preload_data"
    value: "False"
  loop_control:
    label: "{{ item.key }}"

If we don’t already have a password defined, then create one. We register the fact we’ve had to create one, as we’ll need to tell ourselves it once the build is finished.

After that, we set a collection of values into the installer – the hostname, passwords, secret keys and so on. It loops over a key/value pair, and passes these to a regular expression rewrite command, so at the end, we have the settings we want, without having to change this script between releases.

When this is all done, we execute the installer. I’ve seen this done two ways. In an ideal world, you’d throw this into an Ansible shell module, and get it to execute the install, but the problem with that is that the AWX install takes quite a while, so I’d much rather actually be able to see what’s going on… and so, instead, we exit our prepare script at this point, and drop back to the shell to run the installer. Let’s look at both options, and you can decide which one you want to do. In my script, I’m doing the first, but just because it’s a bit neater to have everything in one place.

- name: Run the AWX install.
  shell: ansible-playbook -i inventory install.yml
  args:
    chdir: /opt/awx/installer
cd /opt/awx/installer
ansible-playbook -i inventory install.yml

When this is done, you get a prepared environment, ready to access using the username admin and the password of … well, whatever you set admin_password to.

AWX takes a little while to stand up, so you might want to run this next Ansible stanza to see when it’s ready to go.

- name: Test access to AWX
  tower_user:
    tower_host: "http://{{ ansible_fqdn }}"
    tower_username: admin
    tower_password: "{{ admin_password }}"
    email: "admin@{{ ansible_fqdn }}"
    first_name: "admin"
    last_name: ""
    password: "{{ admin_password }}"
    username: admin
    superuser: yes
    auditor: no
  register: _result
  until: _result.failed == false
  retries: 240 # retry 240 times
  delay: 5 # pause for 5 sec between each try

The upshot to using that command there is that it sets the email address of the admin account to “admin@your.awx.example.org“, if the fully qualified domain name (FQDN) of your machine is your.awx.example.org.

Moving from the Theoretical to the Practical

Now we’ve got our playbook, let’s wrap this up in both a Vagrant Vagrantfile and a Terraform script, this means you can deploy it locally, to test something internally, and in “the cloud”.

To simplify things, and because the version of Ansible deployed on the Vagrant box isn’t the one I want to use, I am using a single “user-data.sh” script for both Vagrant and Terraform. Here that is:

#!/bin/bash
if [ -e "$(which yum)" ]
then
  yum install git python3-pip -y
  pip3 install ansible docker docker-compose
else
  echo "This script only supports CentOS right now."
  exit 1
fi

git clone https://gist.github.com/JonTheNiceGuy/024d72f970d6a1c6160a6e9c3e642e07 /tmp/Install_AWX
cd /tmp/Install_AWX
/usr/local/bin/ansible-playbook Install_AWX.yml

While they both have their differences, they both can execute a script once the machine has finished booting. Let’s start with Vagrant.

Vagrant.configure("2") do |config|
  config.vm.box = "centos/8"

  config.vm.provider :virtualbox do |v|
    v.memory = 4096
  end

  config.vm.provision "shell", path: "user-data.sh"

  config.vm.network "forwarded_port", guest: 80, host: 8080, auto_correct: true
end

To boot this up, once you’ve got Vagrant and Virtualbox installed, run vagrant up and it’ll tell you that it’s set up a port forward from the HTTP port (TCP/80) to a “high” port – TCP/8080. If there’s a collision (because you’re running something else on TCP/8080), it’ll tell you what port it’s forwarded the HTTP port to instead. Once you’ve finished, run vagrant destroy to shut it down. There are lots more tricks you can play with Vagrant, but this is a relatively quick and easy one. Be aware that you’re not using HTTPS, so traffic to the AWX instance can be inspected, but if you’re running this on your local machine, it’s probably not a big issue.

How about running this on a cloud provider, like AWS? We can use the exact same scripts – both the Ansible script, and the user-data.sh script, using Terraform, however, this is a little more complex, as we need to create a VPC, Internet Gateway, Subnet, Security Group and Elastic IP before we can create the virtual machine. What’s more, the Free Tier (that “first hit is free” thing that Amazon Web Services provide to you) does not have enough horsepower to run AWX, so, if you want to look at how to run up AWX in EC2 (or to tweak it to run on Azure, GCP, Digital Ocean or one of the fine offerings from IBM or RedHat), then click through to the gist I’ve put all my code from this post into. The critical lines in there are to select a “CentOS 8” image, open HTTP and SSH into the machine, and to specify the user-data.sh file to provision the machine. Everything else is cruft to make the virtual machine talk to, and be seen by, hosts on the Internet.

To run this one, you need to run terraform init to load the AWS plugin, then terraform apply. Note that this relies on having an AWS access token defined, so if you don’t have them set up, you’ll need to get that sorted out first. Once you’ve finished with your demo, you should run terraform destroy to remove all the assets created by this terraform script. Again, when you’re running that demo, note that you ONLY have HTTP access set up, not HTTPS, so don’t use important credentials on there!

Once you’ve got your AWX environment running, you’ve got just enough AWX there to demo what Ansible Tower looks like, what it can bring to your organisation… and maybe even convince them that it’s worth investing in a license, rather than running AWX in production. Just in case you have that 2AM call-out that we all dread.

Featured image is “pharmacy” by “Tim Evanson” on Flickr and is released under a CC-BY-SA license.

"Salmon leaping" by "openpad" on Flickr

Using public #git sources in private projects

The last post I made was about using submodules to work with code that is being developed, either in isolation from other aspects of a project, or so components can be reused without requiring lots of copy-and-paste activities. It was inspired by a question from a colleague. After asking a few more questions, it turns out that may be what that colleague needed was to consume code from other repositories and store them in their own project.

In this case, I’ve created two repositories, both on GitHub (which will both be removed by the time this post is published) called JonTheNiceGuy/Git_Demo (the “upstream”, open source project) and JonTheNiceGuy-Inc/Git_Demo (the private project, referred to as “mine”).

Getting the “Open Source” project started

Here we have a simple repository, showing the README file for the project (which is likely, in the real world, to show what license that code has been released under, some explaination on what it’s for, etc.) and the actual data source. In this demo, the data source is a series of numbers, showing the decimal number in the first column, the binary representation of that number in the second column, and the hexedecimal representation in the third column.

Our “upstream” repository, showing the README.md file and the data source we want to use.
The data source itself. Note, I forgot to take a screen shot of this file, so I’ve had to “go back to a previous commit” to collect this particular image.

Elsewhere in the world, a private project has started! It’s going to use this data source as some element of this project, and to ensure that the code they’re relying on doesn’t go away, they create their own repository which this code will go into.

Preparing the private project

If both repositories are using GitHub, or if both repositories are using GitLab, then you should be able to “just” Fork the repository, using the “Fork” button in the top right corner:

The “Fork” button

And then select the organisation or account to place the forked repo into.

A list of potential targets to fork the repository into. Your view may differ if you are part of less organisations.

Gitlab has a similar workflow – they have a similar “fork” button, but the list of potential targets is different (but still works the same way).

Gitlab’s list of potential targets to fork the repository into.

Note that you can’t “easily” fork between different Version Control Services! To do something similar, you need to create a new repository in the target service, and then, run some commands to move the code over.

The screen you see immediately after you’ve created a new project – here I’ve created it in the “JonTheNiceGuy-Inc” Organisation. You can see the “quick setup” panel which has the URL to use for the repository.
Here we see the results of running five commands, which are: git clone <url> ; cd <target-dir> ; git remote rename origin upstream ; git remote add mine <url> ; git push –set-upstream mine main

If you’re using the command line method, here’s the commands you issue:

  • git clone http://service/user/repo – This command clones the repository from your service of choice to your local file system. It usually places it into the name of the repository you specified. In this case, “repo”, but in the above context (cloning from Git_Demo.git) it goes into “Git_Demo”. Note, HTTP(S) isn’t the only git transport, another common one is SSH, so if you prefer using SSH instead of HTTP, the URL in this case will be something like git@service:user/repo or service:user/repo. If you’re using submodules, however, I’d strongly recommend using HTTP(S) over SSH for at least the initial pull, as this is much easier for clients to navigate.
  • cd repo – Move into the directory where the cloned repository has been placed.
  • OPTIONAL: git remote rename origin upstream – Rename the remote source of the repository. By default, when you git clone or use git submodule add, the name of the remote resource is called “origin”. I prefer to give a descriptive name for my remote sources, so using “upstream” makes more sense to me. In later commands, I’ll use the remote name “upstream” again. If you don’t want to run this command, and leave the remote name as “origin”, you’ll just have to remember to change it back to “origin”.
  • git remote add mine http://new-service/user/repo – this adds a new remote source, to which you can push new commits, or pull code from your peers. Again, like in the git clone command above, you may use another URL format instead of HTTP(S). You may want to use a different name for the new remote, but again, I tend to prefer “mine” for anything I’m personally working on.
  • git push --set-upstream mine main – This sends the entire commit tree for the branch you’re currently on to your remote source.
Once we’ve run the git push, you can now see that the code has all been pushed to your private project.
Issuing a git log command, shows the current tip on the branch “main” in the “upstream” repository is equal to the current tip on the branch “main” in the “mine” repository, as well as the tip of the “main” repository locally.

Making your local changes

So, while you could just keep using just the upstream project’s code (and doing the above groundwork is good practice to keep you from putting yourself into the situation that the NPM world got into with “left-pad”). What’s more likely is that you want to make your own, local changes to this repository. I’ve done this in the past where I wanted to demonstrate a software build using a public machine image, but internally at work we used our own images. Using this method, I can consume the code I’ve created in public, and just update the assets we use at work.

In this example, let’s update that data file. I’ve added two new lines, “115” (and it’s binary/hex representations) and “132”. I can use the git diff command to confirm the changes I want to make – it’s all good!

Next, I stage the changes with git add, use git commit to write it to the branch, and git push to push it up to my repository. This is all fairly standard stuff in the Git world.

Here we make a change to the data source, confirm there is a difference, add and commit it, and then push it to our default branch (mine/main).

When I then check the git log, we see that there’s a divergence, between my local main branch and the upstream main branch. You could also use git log -p to see the exact code changes, if you wanted… but we know what’s changed already.

The git log, showing that we have a “local” change from the “upstream” source, and that we’ve pushed that local change to the “mine” source.

Bringing data from the upstream source

Oh joy! The upstream project (“JonTheNiceGuy” not “JonTheNiceGuy-Inc”) have updated their Git_Demo repository – they’ve had the audacity to add three new numbers – 9, 10 and 15 – to the data source.

The patch that was applied to this branch. We can check the difference here before we try to do anything with it! It’s something we want!

Well, actually we want to use that data, so let’s start bringing it in. We use the git pull command.

The git pull command, with the remote source (“upstream”) and the branch (“main”) to use.

Because this makes a change to a file that you’ve amended as part of your work, it can’t perform a “Fast forward” of these changes, so Git has to perform a merge commit. This means there’s a new commit in the log, so it’s clear that we’ve updated files because of this merge.

If there were a conflict in this file (which, fortunately, there isn’t!) you’d also be prompted to fix the merge conflicts too. This is a bit bigger than what I’m trying to explain, so instead, I’ll link to a tutorial by Atlassian on merge conflicts. You may also want to take a quick look at the rebasing page on the Git Project’s documentation site, and see whether this might have made your life easier in the case of a conflict!

Anyway, let’s use the default merge message.

The default message when performing a git pull where the change can’t be fast-forwarded.

Once the merge message is done, the merge completes. Yey!

We successfully merged our change, and it’s now part of our local tree

And to prove it, we can now see that we have all the changes from the upstream (commits starting 3b75eb, 8ad9ae, 8bdcae and the new one at a64de2) and our local changes (starting 02e40e).

Because we performed a merge, not a fast forward, our local branch is at a different commit than either of our remote sources – the commit starting 6f4db6 is on our local version, “upstream” is at a64de2 and “mine” is at 02e40e. So we need to fix at least our “mine/main” branch. We do this with a git push.

We do our git push here to get the code into our “mine/main” branch.

And now we can see the git log on our service.

The list of commits on Github for our “mine/main” branch.

And locally, we can see that the remote state has changed too. Let’s look at that git log again.

The result of the git log command on our local machine, showing the new position of the pointers for “upstream/main”, “mine/main” and the local “main” branches.

We can also look at the git blame on the service.

The git blame screen on GitHub, showing who made the various commits.

Or on our local machine.

git blame run locally, showing the commit reference, the author, the date and time of the commit, and the line number, followed by the line in question.

Featured image is “Salmon leaping” by “openpad” on Flickr and is released under a CC-BY license.

"Submarine" by "NH53" on Flickr

Recursive Git Submodules

One of my colleagues asked today about using recursive git submodules. First, let’s quickly drill into what a Submodule is.

Git Submodules

A submodule is a separate git repository, attached to the git repository you’re working on via two “touch points” – a file in the root directory called .gitmodules, and, when checked out, the HEAD file in the .git directory.

When you clone a repository with a submodule attached, it creates the directory the submodule will be cloned into, but leave it empty, unless you either do git submodule update --init --recursive or, when you clone the repository initially, you can ask it to pull any recursive submodules, like this git clone https://your.vcs.example.org/someorg/somerepo.git --recursive.

Git stores the commit reference of the submodule (via a file in .git/modules/$SUBMODULE_NAME/HEAD which contains the commit reference). If you change a file in that submodule, it marks the path of the submodule as “dirty” (because you have an uncommitted change), and if you either commit that change, or pull an updated commit from the source repository, then it will mark the path of the submodule as having changed.

In other words, you can track two separate but linked parts of your code in the same tree, working on each in turn, and without impacting each other code base.

I’ve used this, mostly with Ansible playbooks, where I’ve consumed someone else’s role, like this:

My_Project
|
+- Roles
|  |
|  +- <SUBMODULE> someorg.some_role
|  +- <SUBMODULE> anotherorg.another_role
+- inventory
+- playbook.yml
+- .git
|  |
|  +- HEAD
|  +- modules
|  +- etc
+- .gitmodules

In .gitmodules the file looks like this:

[submodule "module1"]
 path = module1
 url = https://your.vcs.example.org/someorg/module1.git

Once you’ve checked out this submodule, you can do any normal operations in this submodule, like pulls, pushes, commits, tags, etc.

So, what happens when you want to nest this stuff?

Nesting Submodule Recursion

So, my colleague wanted to have files in three layers of directories. In this instance, I’ve simulated this by creating three directories, root, module1 and module2. Typically these would be pulled from their respective Git Service paths, like GitHub or GitLab, but here I’m just using everything on my local file system. Where, in the following screen shot, you see /tmp/ you could easily replace that with https://your.vcs.example.org/someorg/.

The output of running mkdir {root,module1,module2} ; cd root ; git init ; cd ../module1 ; git init ; cd ../module2 ; git init ; touch README.md ; git add README.md ; git commit -m 'Added README.md' ; cd ../module1 ; git submodule add /tmp/module2 module2 ; git commit -m 'Added module2' ; cd ../root ; git submodule add /tmp/module1 module1 ; git submodule update --init --recursive ; tree showing the resulting tree of submodules under the root directory.
The output of running mkdir {root,module1,module2} ; cd root ; git init ; cd ../module1 ; git init ; cd ../module2 ; git init ; touch README.md ; git add README.md ; git commit -m ‘Added README.md’ ; cd ../module1 ; git submodule add /tmp/module2 module2 ; git commit -m ‘Added module2’ ; cd ../root ; git submodule add /tmp/module1 module1 ; git submodule update –init –recursive ; tree showing the resulting tree of submodules under the root directory.

So, here, we’ve created these three paths (basically to initiate the repositories), added a basic commit to the furthest submodule (module2), then done a submodule add into the next furthest submodule (module1) and finally added that into the root tree.

Note, however, when you perform the submodule add it doesn’t automatically clone any submodules, and if you were to, from another machine, perform git clone https://your.vcs.example.org/someorg/root.git you wouldn’t get any of the submodules (neither module1 nor module2) without adding either --recursive to the clone command (like this: git clone --recursive https://your.vcs.example.org/someorg/root.git), or by running the follow-up command git submodule update --init --recursive.

Oh, and if any of these submodules are updated? You need to go in and pull those updates, and then commit that change, like this!

The workflow of pulling updates for each of the submodules, with git add, git commit, and git pull, also noting that when a module has been changed, it shows as having “new commits”.
And here we have the finish of the workflow, updating the other submodules. Note that some of these steps (probably the ones in the earlier image) are likely to have been performed by some other developer on another system, so having all the updates on one machine is pretty rare!

The only thing which isn’t in these submodules is if you’ve done a git clone of the root repo (using the terms from the above screen images), the submodules won’t be using the “master” branch (or a particular “tag” or “branch hame”, for that matter), but will instead be using the commit reference. If you wanted to switch to a specific branch or tag, then you’d need to issue the command git checkout some_remote/some_branch or git checkout master instead of (in the above screen captures) git pull.

If you have any questions or issues with this post, please either add a comment, or contact me via one of the methods at the top or side of this page!

Featured image is “Submarine” by “NH53” on Flickr and is released under a CC-BY license.

"$bash" by "Andrew Mager" on Flickr

One to read: Put your bash code in functions

I’ve got a few mildly ropey bash scripts which I could do with making a bit more resilient, and perhaps even operating faster ;)

As such, I found this page really interesting: https://ricardoanderegg.com/posts/bash_wrap_functions/

In it, Ricardo introduces me to two things which are interesting.

  1. Using the wait command literally waits for all the backgrounded tasks to finish.
  2. Running bash commands like this: function1 & function2 & function3 should run all three processes in parallel. To be honest, I’d always usually do it like this:
    function1 &
    function2 &
    function3 &

The other thing which Ricardo links to is a page suggesting that if you’re downloading a bash script and executing it (which, you know, probably isn’t a good idea at the best of times), then wrapping it in a function, like this:

#!/bin/bash

function main() {
  echo "Some function"
}

main

This means that the bash scripting engine needs to download and parse all the functions before it can run the script. As a result, you’re less likely to get a broken run of your script, because imagine it only got as far as:

#!/bin/bash
echo "Some fun

Then it wouldn’t have terminated the echo command (as an example)…

Anyway, some great tricks here! Love it!

Featured image is “$bash” by “Andrew Mager” on Flickr and is released under a CC-BY-SA license.

A screenshot of the Wordpress site, showing updates available

wp-upgrade.sh – A simple tool to update and upgrade WordPress components via cron

A simple tool to update and upgrade WordPress components

A few years ago, I hosted my blog on Dreamhost. They’ve customized something inside the blog which means it doesn’t automatically update itself. I’ve long since moved this blog off to my own hosting, but I can’t figure out which thing it was they changed, and I’ve got so much content and stuff in here, I don’t really want to mess with it.

Anyway, I like keeping my systems up to date, and I hate logging into a blog and finding updates are pending, so I wrote this script. It uses wp-cli which I have installed to /usr/local/bin/wp as per the install guide. This is also useful if you’re hosting your site in such a way that you can’t make changes to core or plugins from the web interface.

This script updates:

  1. All core files (lines core update-db, core update and language core update)
  2. All plugins (lines plugin update --all and language plugin update --all)
  3. All themes (lines theme update --all and language theme update --all)

To remove any part of this script, just delete those lines, including the /usr/local/bin/wp and --quiet && \ fragments!

I then run sudo -u www-data crontab -e (replacing www-data with the real account name of the user who controls the blog, which can be found by doing an ls -l /var/www/html/ replacing the path to where your blog is located) and I add the bottom line to that crontab file (the rest is just comments to remind you what the fields are!)

#                                         day of month [1-31]
#                                             month [1-12]
#                                                 day of week [1-6 Mon-Sat, 0/7 Sun]
# minute   hour                                         command
1          1,3,5,7,9,11,13,15,17,19,21,23 *   *   *     /usr/local/bin/wp-upgrade.sh /var/www/jon.sprig.gs/blog

This means that every other hour, at 1 minute past the hour, every day, every month, I run the update :)

If you’ve got email setup for this host and user, you’ll get an email whenever it upgrades a component too.

"Root" by "llee_wu" on Flickr

A quick note on using Firefox in Windows in a Corporate or Enterprise environment

I’ve been using Firefox as my “browser of choice” for around 15 years. I tend to prefer to use it for all sorts of reasons, but the main thing I expect is support for extensions. Not many of them, but … well, there’s a few!

There are two stumbling blocks for using Firefox in a corporate or enterprise setting. These are:

  1. NTLM or Kerberos Authentication for resources like Sharepoint and ADFS.
  2. Enterprise TLS certificates (usually deployed via GPO as part of the domain)

These are both trivially fixed in the about:config screen, but first you need to get past a scary looking warning page!

In the address bar, where it probably currently says jon.sprig.gs, click in there and type about:config.

Getting to about:config

This brings you to a scary page!

Proceed with caution! (of course!!)

Click the “Accept the Risk and Continue” (note, this is with Firefox 76. Wording with later or earlier versions may differ).

As if it wasn’t obvious enough from the previous screen, this “may impact performance and security”…

And then you get a search box.

In the “Search preference name” type in ntlm and find the line that says network.automatic-ntlm-auth.trusted-uris.

The “NTLM Options page”

Type in there the suffixes of any TRUSTED domains. For example, if your company uses the domain names of bigcompany.com, bigco.local and big.company then you’d type in:

bigcompany.com,bigco.local,big.company

Any pages that you browse to, where they request NTLM authentication, will receive an NTLM set of credentials if prompted (same as IE, Edge, and Chrome already do!) NTLM is effectively a way to pass a trusted Kerberos ticket (a bit like your domain credentials) into a web page.

Next up, let’s get those pesky certificate errors removed!

This assumes that you have a centrally managed TLS Root Certificate, and the admins in your network haven’t just been dumping self signed certificates everywhere (nothing gets around that… just sayin’).

Still in about:config, clear the search box and type enterprise, like this!

Enterprise Roots are here!

Find the line security.enterprise_roots.enabled and make sure it says true. If it doesn’t double click it, so it does.

Now you can close your preferences page, and you should be fine to visit your internal source code repository, time sheeting system or sharepoint site, with almost no interruptions!

If you’ve been tasked for turning this stuff on in your estate of managed desktop environment machines, then you might find this article (on Autoconfiguration of Firefox) of use (but I’ve not tried it!)

Featured image is “Root” by “llee_wu” on Flickr and is released under a CC-BY-ND license.

Publishing a “Bio” in Secure Scuttlebutt, using ssb-server

This is one of those “oh, there it is” posts, more for myself than anyone else. Anyway, if you use SSB from a shell (perhaps you run your own SSB Pub, for example), you might want to run this style of command:

ssb-server publish --type about --about "$(ssb-server whoami | jq .id -r)" --name "Some Server" --description "I'm just some server, you know"

As long as you have --name or --description in there, you should be good to go!